
Tangram
Release 0.4.0

Department of AI/ML(Research Biology), Genentech

Nov 03, 2021

GENERAL

1 Tangram News 3

2 Citing Tangram 5

3 Release Notes 7
3.1 Getting Started . 7
3.2 Tangram Under the Hood . 8
3.3 Classes . 9
3.4 Frequently Asked Questions . 24
3.5 Tutorials . 25

Python Module Index 67

Index 69

i

ii

Tangram, Release 0.4.0

Contributors

• Tommaso Biancalani: author of method, PyPI maintainer Contact: biancalt@gene.com

• Gabriele Scalia: author of method Contact: gabriele.scalia@roche.com

• Ziqing Lu: PyPI maintainer Contact: luz21@gene.com

• Shreya Gaddam: PyPI maintainer Contact: gaddams@gene.com

• Anna Hupalowska: Artwork Contact: ahupalow@broadinstitute.org

Tangram is a Python package, written in PyTorch and based on scanpy , for mapping single-cell (or single-nucleus) gene
expression data onto spatial gene expression data. The single-cell dataset and the spatial dataset should be collected
from the same anatomical region/tissue type, ideally from a biological replicate, and need to share a set of genes.
Tangram aligns the single-cell data in space by fitting gene expression on the shared genes. The best way to familiarize
yourself with Tangram is to check out our tutorials.

GENERAL 1

https://github.com/broadinstitute/Tangram/stargazers
https://pypi.org/project/tangram-sc/
https://pepy.tech/project/tangram-sc
https://twitter.com/tbyanc?lang=en
https://pytorch.org/
https://scanpy.readthedocs.io/en/stable/

Tangram, Release 0.4.0

2 GENERAL

CHAPTER

ONE

TANGRAM NEWS

• On Jan 28th 2021, Sten Linnarsson gave a talk at the WWNDev Forum and demostrated their mappings of the
developmental mouse brain using Tangram.

• On Mar 9th 2021, Nicholas Eagles wrote a blog post about applying Tangram on Visium data.

• The Tangram method has been used by our colleagues at Harvard and Broad Institute, to map cell types for the
developmental mouse brain -see Fig. 2 [`Nature(2021)<https://www.nature.com/articles/s41586-021-03670-
5>`_]

• Tangram is now officially a part of Squidpy

3

https://www.youtube.com/watch?v=0mxIe2AsSKs
http://research.libd.org/rstatsclub/2021/03/09/lessons-learned-applying-tangram-on-visium-data/#.YPsZphNKhb-
https://squidpy.readthedocs.io/en/stable/index.html

Tangram, Release 0.4.0

4 Chapter 1. Tangram News

CHAPTER

TWO

CITING TANGRAM

Tangram has been released in the following publication

Biancalani* T., Scalia* G. et al. - _Deep learning and alignment of spatially-resolved whole transcriptomes of single
cells in the mouse brain with Tangram biorXiv 10.1101/2020.08.29.272831 (2020)

5

https://www.biorxiv.org/content/10.1101/2020.08.29.272831v3

Tangram, Release 0.4.0

6 Chapter 2. Citing Tangram

CHAPTER

THREE

RELEASE NOTES

1.0.0 2021-08-06 - Initial Release

3.1 Getting Started

3.1.1 Installing Tangram

To install Tangram, make sure you have PyTorch and scanpy installed. If you need more details on the dependences,
look at the environment.yml file.

Install Tangram from shell:

pip install tangram-sc

3.1.2 Running Tangram

Cell Level

To install Tangram, make sure you have PyTorch and scanpy installed. If you need more details on the dependences,
look at the environment.yml file.

Install tangram-sc from shell:

pip install tangram-sc

Import tangram:

import tangram as tg

Then load your spatial data and your single cell data (which should be in AnnData format), and pre-process them using
tg.pp_adatas:

ad_sp = sc.read_h5ad(path)
ad_sc = sc.read_h5ad(path)
tg.pp_adatas(ad_sc, ad_sp, genes=None)

The function pp_adatas finds the common genes between adata_sc, adata_sp, and saves them in two adatas.uns
for mapping and analysis later. Also, it subsets the intersected genes to a set of training genes passed by genes. If
genes=None, Tangram maps using all genes shared by the two datasets. Once the datasets are pre-processed we can
map:

7

https://pytorch.org/
https://scanpy.readthedocs.io/en/stable/
https://github.com/broadinstitute/Tangram/blob/master/environment.yml
https://pytorch.org/
https://scanpy.readthedocs.io/en/stable/
https://github.com/broadinstitute/Tangram/blob/master/environment.yml
https://anndata.readthedocs.io/en/latest/anndata.AnnData.html

Tangram, Release 0.4.0

ad_map = tg.map_cells_to_space(ad_sc, ad_sp)

The returned AnnData, ad_map , is a cell-by-voxel structure where ad_map.X[i, j] gives the probability for cell i to
be in voxel j. This structure can be used to project gene expression from the single cell data to space, which is achieved
via tg.project_genes:

ad_ge = tg.project_genes(ad_map, ad_sc)

The returned ad_ge is a voxel-by-gene AnnData, similar to spatial data ad_sp, but where gene expression has been
projected from the single cells. This allows to extend gene throughput, or correct for dropouts, if the single cells have
higher quality (or more genes) than single cell data. It can also be used to transfer cell types onto space.

For more details on how to use Tangram check out our tutorial.

Cluster Level

To enable faster training and consume less memory, Tangram mapping can be done at cell cluster level.

Prepare the input data as the same you would do for cell level Tangram mapping. Then map using following code:

ad_map = tg.map_cells_to_space(
ad_sc,
ad_sp,
mode='clusters',
cluster_label='subclass_label')

Provided cluster_label must belong to ad_sc.obs. Above example code is to map at subclass_label level, and the
subclass_label is in ad_sc.obs.

To project gene expression to space, use tg.project_genes and be sure to set the cluster_label argument to the same
cluster label in mapping:

ad_ge = tg.project_genes(
ad_map,
ad_sc,
cluster_label='subclass_label')

3.2 Tangram Under the Hood

Tangram instantiates a Mapper object passing the following arguments: | _S_: single cell matrix with shape cell-by-
gene. Note that genes is the number of training genes. | _G_: spatial data matrix with shape voxels-by-genes. Voxel
can contain multiple cells.

Then, Tangram searches for a mapping matrix M, with shape voxels-by-cells, where the element M_ij signifies the
probability of cell i of being in spot j. Tangram computes the matrix M by minimizing the following loss:

where cos_sim is the cosine similarity. The meaning of the loss function is that gene expression of the mapped single
cells should be as similar as possible to the spatial data G, under the cosine similarity sense.

The above accounts for basic Tangram usage. In our manuscript, we modified the loss function in several ways so as
to add various kinds of prior knowledge, such as number of cell contained in each voxels.

8 Chapter 3. Release Notes

https://github.com/broadinstitute/Tangram/blob/master/tangram_tutorial.ipynb

Tangram, Release 0.4.0

3.3 Classes

tangram.mapping_optimizer Library for instantiating and running the optimizer for
Tangram.

tangram.mapping_utils Mapping helpers
tangram.plot_utils This module includes plotting utility functions.
tangram.utils Utility functions to pre- and post-process data for Tan-

gram.

3.3.1 tangram.mapping_optimizer

Description

Library for instantiating and running the optimizer for Tangram. The optimizer comes in two flavors, which correspond
to two different classes: - Mapper: optimizer without filtering (i.e., all single cells are mapped onto space). At the end,
the learned mapping matrix M is returned. - MapperConstrained: optimizer with filtering (i.e., only a subset of single
cells are mapped onto space). At the end, the learned mapping matrix M and the learned filter F are returned.

Classes

Mapper(S, G[, d, d_source, lambda_g1, . . .]) Allows instantiating and running the optimizer for Tan-
gram, without filtering.

MapperConstrained(S, G, d[, lambda_d, . . .]) Allows instantiating and running the optimizer for Tan-
gram, with filtering.

tangram.mapping_optimizer.Mapper

class tangram.mapping_optimizer.Mapper(S, G, d=None, d_source=None, lambda_g1=1.0, lambda_d=0,
lambda_g2=0, lambda_r=0, device='cpu', adata_map=None,
random_state=None)

Allows instantiating and running the optimizer for Tangram, without filtering. Once instantiated, the optimizer
is run with the ‘train’ method, which also returns the mapping result.

Mapper.train(num_epochs[, learning_rate, . . .]) Run the optimizer and returns the mapping outcome.

tangram.mapping_optimizer.Mapper.train

Mapper.train(num_epochs, learning_rate=0.1, print_each=100)
Run the optimizer and returns the mapping outcome.

Parameters
• num_epochs (int) – Number of epochs.

• learning_rate (float) – Optional. Learning rate for the optimizer. Default is 0.1.

• print_each (int) – Optional. Prints the loss each print_each epochs. If None, the loss
is never printed. Default is 100.

3.3. Classes 9

Tangram, Release 0.4.0

Returns The optimized mapping matrix M (ndarray), with shape (number_cells, number_spots).
training_history (dict): loss for each epoch

Return type output (ndarray)

tangram.mapping_optimizer.MapperConstrained

class tangram.mapping_optimizer.MapperConstrained(S, G, d, lambda_d=1, lambda_g1=1,
lambda_g2=1, lambda_r=0, lambda_count=1,
lambda_f_reg=1, target_count=None,
device='cpu', adata_map=None,
random_state=None)

Allows instantiating and running the optimizer for Tangram, with filtering. Once instantiated, the optimizer is
run with the ‘train’ method, which also returns the mapping and filter results.

MapperConstrained.train(num_epochs[, . . .]) Run the optimizer and returns the mapping outcome.

tangram.mapping_optimizer.MapperConstrained.train

MapperConstrained.train(num_epochs, learning_rate=0.1, print_each=100)
Run the optimizer and returns the mapping outcome.

Parameters
• num_epochs (int) – Number of epochs.

• learning_rate (float) – Optional. Learning rate for the optimizer. Default is 0.1.

• print_each (int) – Optional. Prints the loss each print_each epochs. If None, the loss
is never printed. Default is 100.

Returns M (ndarray): is the optimized mapping matrix, shape = (number_cells, number_spots).
f (ndarray): is the optimized filter, shape = (number_cells,). training_history (dict): loss for
each epoch

Return type A tuple (output, F_out, training_history), with

3.3.2 tangram.mapping_utils

Description

Mapping helpers

Functions

adata_to_cluster_expression(adata, clus-
ter_label)

Convert an AnnData to a new AnnData with cluster ex-
pressions.

map_cells_to_space(adata_sc, adata_sp[, . . .]) Map single cell data (adata_sc) on spatial data
(adata_sp).

pp_adatas(adata_sc, adata_sp[, genes]) Pre-process AnnDatas so that they can be mapped.

10 Chapter 3. Release Notes

Tangram, Release 0.4.0

tangram.mapping_utils.adata_to_cluster_expression

tangram.mapping_utils.adata_to_cluster_expression(adata, cluster_label, scale=True,
add_density=True)

Convert an AnnData to a new AnnData with cluster expressions. Clusters are based on cluster_label in adata.obs.
The returned AnnData has an observation for each cluster, with the cluster-level expression equals to the aver-
age expression for that cluster. All annotations in adata.obs except cluster_label are discarded in the returned
AnnData.

Parameters
• adata (AnnData) – single cell data

• cluster_label (String) – field in adata.obs used for aggregating values

• scale (bool) – Optional. Whether weight input single cell by # of cells in cluster. Default
is True.

• add_density (bool) – Optional. If True, the normalized number of cells in each cluster is
added to the returned AnnData as obs.cluster_density. Default is True.

Returns aggregated single cell data

Return type AnnData

tangram.mapping_utils.map_cells_to_space

tangram.mapping_utils.map_cells_to_space(adata_sc, adata_sp, cv_train_genes=None,
cluster_label=None, mode='cells', device='cpu',
learning_rate=0.1, num_epochs=1000, scale=True,
lambda_d=0, lambda_g1=1, lambda_g2=0, lambda_r=0,
lambda_count=1, lambda_f_reg=1, target_count=None,
random_state=None, verbose=True,
density_prior='rna_count_based')

Map single cell data (adata_sc) on spatial data (adata_sp).

Parameters
• adata_sc (AnnData) – single cell data

• adata_sp (AnnData) – gene spatial data

• cv_train_genes (list) – Optional. Training gene list. Default is None.

• cluster_label (str) – Optional. Field in adata_sc.obs used for aggregating single cell
data. Only valid for mode=clusters.

• mode (str) – Optional. Tangram mapping mode. Currently supported: ‘cell’, ‘clusters’,
‘constrained’. Default is ‘cell’.

• device (string or torch.device) – Optional. Default is ‘cpu’.

• learning_rate (float) – Optional. Learning rate for the optimizer. Default is 0.1.

• num_epochs (int) – Optional. Number of epochs. Default is 1000.

• scale (bool) – Optional. Whether weight input single cell data by the number of cells in
each cluster, only valid when cluster_label is not None. Default is True.

• lambda_d (float) – Optional. Hyperparameter for the density term of the optimizer. De-
fault is 0.

3.3. Classes 11

Tangram, Release 0.4.0

• lambda_g1 (float) – Optional. Hyperparameter for the gene-voxel similarity term of the
optimizer. Default is 1.

• lambda_g2 (float) – Optional. Hyperparameter for the voxel-gene similarity term of the
optimizer. Default is 0.

• lambda_r (float) – Optional. Strength of entropy regularizer. An higher entropy promotes
probabilities of each cell peaked over a narrow portion of space. lambda_r = 0 corresponds
to no entropy regularizer. Default is 0.

• lambda_count (float) – Optional. Regularizer for the count term. Default is 1. Only valid
when mode == ‘constrained’

• lambda_f_reg (float) – Optional. Regularizer for the filter, which promotes Boolean
values (0s and 1s) in the filter. Only valid when mode == ‘constrained’. Default is 1.

• target_count (int) – Optional. The number of cells to be filtered. Default is None.

• random_state (int) – Optional. pass an int to reproduce training. Default is None.

• verbose (bool) – Optional. If print training details. Default is True.

• density_prior (str, ndarray or None) – Spatial density of spots, when is a string,
value can be ‘rna_count_based’ or ‘uniform’, when is a ndarray, shape = (number_spots,).
This array should satisfy the constraints sum() == 1. If None, the density term is ignored.
Default value is ‘rna_count_based’.

Returns a cell-by-spot AnnData containing the probability of mapping cell i on spot j. The uns field
of the returned AnnData contains the training genes.

tangram.mapping_utils.pp_adatas

tangram.mapping_utils.pp_adatas(adata_sc, adata_sp, genes=None)
Pre-process AnnDatas so that they can be mapped. Specifically: - Remove genes that all entries are zero - Find
the intersection between adata_sc, adata_sp and given marker gene list, save the intersected markers in two adatas
- Calculate density priors and save it with adata_sp

Parameters
• adata_sc (AnnData) – single cell data

• adata_sp (AnnData) – spatial expression data

• genes (List) – Optional. List of genes to use. If None, all genes are used.

Returns update adata_sc by creating uns training_genes overlap_genes fields update adata_sp by
creating uns training_genes overlap_genes fields and creating obs rna_count_based_density &
uniform_density field

3.3.3 tangram.plot_utils

Description

This module includes plotting utility functions.

12 Chapter 3. Release Notes

Tangram, Release 0.4.0

Functions

construct_obs_plot(df_plot, adata[, perc, . . .])

convert_adata_array(adata)

ordered_predictions(xs, ys, preds[, reverse]) Utility function that orders 2d points based on values as-
sociated to each point.

plot_annotation_entropy(adata_map[, annota-
tion])

Utility function to plot entropy box plot by each annota-
tion.

plot_auc(df_all_genes[, test_genes]) Plots auc curve which is used to evaluate model perfor-
mance.

plot_cell_annotation(adata_map, adata_sp[, . . .]) Transfer an annotation for a single cell dataset onto
space, and visualize corresponding spatial probability
maps.

plot_cell_annotation_sc(adata_sp, . . . [, x, . . .])

plot_gene_sparsity(adata_1, adata_2[, . . .]) Compare sparsity of all genes between adata_1 and
adata_2.

plot_genes(genes, adata_measured, . . . [, x, . . .]) Utility function to plot and compare original and pro-
jected gene spatial pattern ordered by intensity of the
gene signal.

plot_genes_sc(genes, adata_measured, . . . [, . . .])

plot_test_scores(df_gene_score[, bins, alpha]) Plots gene level test scores with each gene’s sparsity for
mapping result.

plot_training_scores(adata_map[, bins, alpha]) Plots the 4-panel training diagnosis plot
q_value(data, perc) Computes min and max values according to percentile

for colormap in plot functions
quick_plot_gene(gene, adata[, x, y, s, log, . . .]) Utility function to quickly plot a gene in a AnnData

structure ordered by intensity of the gene signal.

tangram.plot_utils.construct_obs_plot

tangram.plot_utils.construct_obs_plot(df_plot, adata, perc=0, suffix=None)

tangram.plot_utils.convert_adata_array

tangram.plot_utils.convert_adata_array(adata)

tangram.plot_utils.ordered_predictions

tangram.plot_utils.ordered_predictions(xs, ys, preds, reverse=False)
Utility function that orders 2d points based on values associated to each point.

Parameters
• xs (Pandas series) – Sequence of x coordinates (floats).

• ys (Pandas series) – Sequence of y coordinates (floats).

• preds (Pandas series) – Sequence of spatial prediction.

3.3. Classes 13

Tangram, Release 0.4.0

• reverse (bool) – Optional. False will sort ascending, True will sort descending. Default
is False.

Returns Returns the ordered xs, ys, preds.

tangram.plot_utils.plot_annotation_entropy

tangram.plot_utils.plot_annotation_entropy(adata_map, annotation='cell_type')
Utility function to plot entropy box plot by each annotation.

Parameters
• adata_map (AnnData) – cell-by-voxel tangram mapping result.

• annotation (str) – Optional. Must be a column in adata_map.obs. Default is ‘cell_type’.

Returns None

tangram.plot_utils.plot_auc

tangram.plot_utils.plot_auc(df_all_genes, test_genes=None)

Plots auc curve which is used to evaluate model performance.

Parameters
• df_all_genes (Pandas dataframe) – returned by compare_spatial_geneexp(adata_ge,

adata_sp);

• test_genes (list) – list of test genes, if not given, test_genes will be set to genes where
‘is_training’ field is False

Returns None

tangram.plot_utils.plot_cell_annotation

tangram.plot_utils.plot_cell_annotation(adata_map, adata_sp, annotation='cell_type', x='x', y='y',
nrows=1, ncols=1, s=5, cmap='viridis', subtitle_add=False,
robust=False, perc=0, invert_y=True)

Transfer an annotation for a single cell dataset onto space, and visualize corresponding spatial probability maps.

Parameters
• adata_map (AnnData) – cell-by-spot AnnData containing mapping result

• adata_sp (AnnData) – spot-by-gene spatial AnnData

• annotation (str) – Optional. Must be a column in adata_map.obs. Default is ‘cell_type’.

• x (str) – Optional. Column name for spots x-coordinates (must be in adata_map.var).
Default is ‘x’.

• y (str) – Optional. Column name for spots y-coordinates (must be in adata_map.var).
Default is ‘y’.

• nrows (int) – Optional. Number of rows of the subplot grid. Default is 1.

• ncols (int) – Optional. Number of columns of the subplot grid. Default is 1.

• s (float) – Optional. Marker size. Default is 5.

14 Chapter 3. Release Notes

Tangram, Release 0.4.0

• cmap (str) – Optional. Name of colormap. Default is ‘viridis’.

• subtitle_add (bool) – Optional. If add annotation name as the subtitle. Default is False.

• robust (bool) – Optional. If True, the colormap range is computed with given percentiles
instead of extreme values.

• perc (float) – Optional. percentile used to calculate colormap range, only used when
robust is True. Default is zero.

• invert_y (bool) – Optional. If invert the y axis for the plot. Default is True.

Returns None

tangram.plot_utils.plot_cell_annotation_sc

tangram.plot_utils.plot_cell_annotation_sc(adata_sp, annotation_list, x='x', y='y', spot_size=None,
scale_factor=None, perc=0, ax=None)

tangram.plot_utils.plot_gene_sparsity

tangram.plot_utils.plot_gene_sparsity(adata_1, adata_2, xlabel='adata_1', ylabel='adata_2',
genes=None, s=1)

Compare sparsity of all genes between adata_1 and adata_2.

Parameters
• adata_1 (AnnData) – Input data

• adata_2 (AnnData) – Input data

• xlabel (str) – Optional. For setting the xlabel in the plot. Default is ‘adata_1’.

• ylabel (str) – Optional. For setting the ylabel in the plot. Default is ‘adata_2’.

• genes (list) – Optional. List of genes to use. If None, all genes are used.

• s (float) – Optional. Controls the size of marker. Default is 1.

Returns None

tangram.plot_utils.plot_genes

tangram.plot_utils.plot_genes(genes, adata_measured, adata_predicted, x='x', y='y', s=5, log=False,
cmap='inferno', robust=False, perc=0, invert_y=True)

Utility function to plot and compare original and projected gene spatial pattern ordered by intensity of the gene
signal.

Parameters
• genes (list) – list of gene names (str).

• adata_measured (AnnData) – ground truth gene spatial AnnData

• adata_predicted (AnnData) – projected gene spatial AnnData, can also be adata_ge_cv
AnnData returned by cross_validation under ‘loo’ mode

• x (str) – Optional. Column name for spots x-coordinates (must be in adata_measured.var
and adata_predicted.var). Default is ‘x’.

3.3. Classes 15

Tangram, Release 0.4.0

• y (str) – Optional. Column name for spots y-coordinates (must be in adata_measured.var
and adata_predicted.var). Default is ‘y’.

• s (float) – Optional. Marker size. Default is 5.

• log – Optional. Whether to apply the log before plotting. Default is False.

• cmap (str) – Optional. Name of colormap. Default is ‘inferno’.

• robust (bool) – Optional. If True, the colormap range is computed with given percentiles
instead of extreme values.

• perc (float) – Optional. percentile used to calculate colormap range, only used when
robust is True. Default is zero.

• invert_y (bool) – Optional. If invert the y axis for the plot. Default is True.

Returns None

tangram.plot_utils.plot_genes_sc

tangram.plot_utils.plot_genes_sc(genes, adata_measured, adata_predicted, x='x', y='y', spot_size=None,
scale_factor=None, cmap='inferno', perc=0, return_figure=False)

tangram.plot_utils.plot_test_scores

tangram.plot_utils.plot_test_scores(df_gene_score, bins=10, alpha=0.7)
Plots gene level test scores with each gene’s sparsity for mapping result.

Parameters
• df_gene_score (Pandas dataframe) – returned by compare_spatial_geneexp(adata_ge,

adata_sp, adata_sc); with “gene names” as the index and “score”, “sparsity_sc”, “spar-
sity_sp”, “sparsity_diff” as the columns

• bins (int or string) – Optional. Default is 10.

• alpha (float) – Optional. Ranges from 0-1, and controls the opacity. Default is 0.7.

Returns None

tangram.plot_utils.plot_training_scores

tangram.plot_utils.plot_training_scores(adata_map, bins=10, alpha=0.7)
Plots the 4-panel training diagnosis plot

Parameters
• adata_map (AnnData) –

• bins (int or string) – Optional. Default is 10.

• alpha (float) – Optional. Ranges from 0-1, and controls the opacity. Default is 0.7.

Returns None

16 Chapter 3. Release Notes

Tangram, Release 0.4.0

tangram.plot_utils.q_value

tangram.plot_utils.q_value(data, perc)
Computes min and max values according to percentile for colormap in plot functions

Parameters
• data (numpy array) – input

• perc (float) – percentile that between 0 and 100 inclusive

Returns will be later used to define the data range covers by the colormap

Return type tuple of floats

tangram.plot_utils.quick_plot_gene

tangram.plot_utils.quick_plot_gene(gene, adata, x='x', y='y', s=50, log=False, cmap='viridis',
robust=False, perc=0)

Utility function to quickly plot a gene in a AnnData structure ordered by intensity of the gene signal.

Parameters
• gene (str) – Gene name.

• adata (AnnData) – spot-by-gene spatial data.

• x (str) – Optional. Column name for spots x-coordinates (must be in adata.var). Default
is ‘x’.

• y (str) – Optional. Column name for spots y-coordinates (must be in adata.var). Default is
‘y’.

• s (float) – Optional. Marker size. Default is 5.

• log – Optional. Whether to apply the log before plotting. Default is False.

• cmap (str) – Optional. Name of colormap. Default is ‘viridis’.

• robust (bool) – Optional. If True, the colormap range is computed with given percentiles
instead of extreme values.

• perc (float) – Optional. percentile used to calculate colormap range, only used when
robust is True. Default is zero.

Returns None

3.3.4 tangram.utils

Description

Utility functions to pre- and post-process data for Tangram.

3.3. Classes 17

Tangram, Release 0.4.0

Functions

annotate_gene_sparsity(adata) Annotates gene sparsity in given Anndatas.
compare_spatial_geneexp(adata_ge, adata_sp) Compares generated spatial data with the true spatial

data
count_cell_annotations(adata_map, adata_sc, . . .) Count cells in a voxel for each annotation.
create_segment_cell_df (adata_sp) Produces a Pandas dataframe where each row is a seg-

mentation object, columns reveals its position informa-
tion.

cross_val(adata_sc, adata_sp[, . . .]) Executes cross validation
cv_data_gen(adata_sc, adata_sp[, cv_mode]) Generates pair of training/test gene indexes cross valida-

tion datasets
deconvolve_cell_annotations(adata_sp[, . . .]) Assigns cell annotation to each segmented cell.
df_to_cell_types(df, cell_types) Utility function that “randomly” assigns cell coordinates

in a voxel to known numbers of cell types in that voxel.
eval_metric(df_all_genes[, test_genes]) Compute metrics on given test_genes set for evaluation
get_matched_genes(prior_genes_names, . . . [, . . .]) Given the list of genes in the spatial data and the list

of genes in the single nuclei, identifies the subset of
genes included in both lists and returns the correspond-
ing matching indices.

one_hot_encoding(l[, keep_aggregate]) Given a sequence, returns a DataFrame with a column
for each unique value in the sequence and a one-hot-
encoding.

project_cell_annotations(adata_map, adata_sp) Transfer annotation from single cell data onto space.
project_genes(adata_map, adata_sc[, . . .]) Transfer gene expression from the single cell onto space.
read_pickle(filename) Helper to read pickle file which may be zipped or not.
transfer_annotations_prob(mapping_matrix, . . .) Transfer cell annotations onto space through a mapping

matrix.
transfer_annotations_prob_filter(. . .) Transfer cell annotations onto space through a mapping

matrix and a filter.

tangram.utils.annotate_gene_sparsity

tangram.utils.annotate_gene_sparsity(adata)
Annotates gene sparsity in given Anndatas. Update given Anndata by creating var “sparsity” field with
gene_sparsity (1 - % non-zero observations).

Parameters adata (Anndata) – single cell or spatial data.

Returns None

tangram.utils.compare_spatial_geneexp

tangram.utils.compare_spatial_geneexp(adata_ge, adata_sp, adata_sc=None, genes=None)
Compares generated spatial data with the true spatial data

Parameters
• adata_ge (AnnData) – generated spatial data returned by project_genes

• adata_sp (AnnData) – gene spatial data

• adata_sc (AnnData) – Optional. When passed, sparsity difference between adata_sc and
adata_sp will be calculated. Default is None.

18 Chapter 3. Release Notes

Tangram, Release 0.4.0

• genes (list) – Optional. When passed, returned output will be subset on the list of genes.
Default is None.

Returns
a dataframe with columns: ‘score’, ‘is_training’, ‘sparsity_sp’(spatial data sparsity).

Columns - ‘sparsity_sc’(single cell data sparsity), ‘sparsity_diff’(spatial sparsity - single
cell sparsity) returned only when adata_sc is passed.

Return type Pandas Dataframe

tangram.utils.count_cell_annotations

tangram.utils.count_cell_annotations(adata_map, adata_sc, adata_sp, annotation='cell_type',
threshold=0.5)

Count cells in a voxel for each annotation.

Parameters
• adata_map (AnnData) – cell-by-spot AnnData returned by train function.

• adata_sc (AnnData) – cell-by-gene AnnData.

• adata_sp (AnnData) – spatial AnnData data used to save the mapping result.

• annotation (str) – Optional. Cell annotations matrix with shape (number_cells, num-
ber_annotations). Default is ‘cell_type’.

• threshold (float) – Optional. Valid for using with adata_map.obs[‘F_out’] from ‘con-
strained’ mode mapping. Cell’s probability below this threshold will be dropped. Default is
0.5.

Returns None. Update spatial AnnData by creating obsm tangram_ct_count field which contains a
dataframe that each row is a spot and each column has the cell count for each cell annotation
(number_spots, number_annotations).

tangram.utils.create_segment_cell_df

tangram.utils.create_segment_cell_df(adata_sp)
Produces a Pandas dataframe where each row is a segmentation object, columns reveals its position information.

Parameters adata_sp (AnnData) – spot-by-gene AnnData structure. Must contain
obsm.[‘image_features’]

Returns None. Update spatial AnnData.uns[‘tangram_cell_segmentation’] with a dataframe: each
row represents a segmentation object (single cell/nuclei). Columns are ‘spot_idx’ (voxel id),
and ‘y’, ‘x’, ‘centroids’ to specify the position of the segmentation object. Update spatial Ann-
Data.obsm[‘trangram_spot_centroids’] with a sequence

3.3. Classes 19

Tangram, Release 0.4.0

tangram.utils.cross_val

tangram.utils.cross_val(adata_sc, adata_sp, cluster_label=None, mode='clusters', scale=True, lambda_d=0,
lambda_g1=1, lambda_g2=0, lambda_r=0, lambda_count=1, lambda_f_reg=1,
target_count=None, num_epochs=1000, device='cuda:0', learning_rate=0.1,
cv_mode='loo', return_gene_pred=False, density_prior=None, random_state=None,
verbose=False)

Executes cross validation

Parameters
• adata_sc (AnnData) – single cell data

• adata_sp (AnnData) – gene spatial data

• cluster_label (str) – the level that the single cell data will be aggregate at, this is only
valid for clusters mode mapping

• mode (str) – Optional. Tangram mapping mode. Currently supported: ‘cell’, ‘clusters’,
‘constrained’. Default is ‘clusters’.

• scale (bool) – Optional. Whether weight input single cell by # of cells in cluster, only valid
when cluster_label is not None. Default is True.

• lambda_g1 (float) – Optional. Strength of Tangram loss function. Default is 1.

• lambda_d (float) – Optional. Strength of density regularizer. Default is 0.

• lambda_g2 (float) – Optional. Strength of voxel-gene regularizer. Default is 0.

• lambda_r (float) – Optional. Strength of entropy regularizer. Default is 0.

• lambda_count (float) – Optional. Regularizer for the count term. Default is 1. Only valid
when mode == ‘constrained’

• lambda_f_reg (float) – Optional. Regularizer for the filter, which promotes Boolean
values (0s and 1s) in the filter. Only valid when mode == ‘constrained’. Default is 1.

• target_count (int) – Optional. The number of cells to be filtered. Default is None.

• num_epochs (int) – Optional. Number of epochs. Default is 1000.

• learning_rate (float) – Optional. Learning rate for the optimizer. Default is 0.1.

• device (str or torch.device) – Optional. Default is ‘cuda:0’.

• cv_mode (str) – Optional. cross validation mode, ‘loo’ (‘leave-one-out’) and ‘10fold’ sup-
ported. Default is ‘loo’.

• return_gene_pred (bool) – Optional. if return prediction and true spatial expression data
for test gene, only applicable when ‘loo’ mode is on, default is False.

• density_prior (ndarray or str) – Spatial density of spots, when is a string, value can
be ‘rna_count_based’ or ‘uniform’, when is a ndarray, shape = (number_spots,). This array
should satisfy the constraints sum() == 1. If not provided, the density term is ignored.

• random_state (int) – Optional. pass an int to reproduce training. Default is None.

• verbose (bool) – Optional. If print training details. Default is False.

Returns a dictionary contains information of cross validation (hyperparameters, average test score
and train score, etc.) adata_ge_cv (AnnData): predicted spatial data by LOOCV. Only returns
when return_gene_pred is True and in ‘loo’ mode. test_gene_df (Pandas dataframe): dataframe
with columns: ‘score’, ‘is_training’, ‘sparsity_sp’(spatial data sparsity)

20 Chapter 3. Release Notes

Tangram, Release 0.4.0

Return type cv_dict (dict)

tangram.utils.cv_data_gen

tangram.utils.cv_data_gen(adata_sc, adata_sp, cv_mode='loo')
Generates pair of training/test gene indexes cross validation datasets

Parameters
• adata_sc (AnnData) – single cell data

• adata_sp (AnnData) – gene spatial data

• mode (str) – Optional. support ‘loo’ and ‘10fold’. Default is ‘loo’.

Yields tuple – list of train_genes, list of test_genes

tangram.utils.deconvolve_cell_annotations

tangram.utils.deconvolve_cell_annotations(adata_sp, filter_cell_annotation=None)
Assigns cell annotation to each segmented cell. Produces an AnnData structure that saves the assignment in its
obs dataframe.

Parameters
• adata_sp (AnnData) – Spatial AnnData structure.

• filter_cell_annotation (sequence) – Optional. Sequence of cell annotation names to
be considered for deconvolution. Default is None. When no values passed, all cell annotation
names in adata_sp.obsm[“tangram_ct_pred”] will be used.

Returns Saves the cell annotation assignment result in its obs dataframe where each row representing
a segmentation object, column ‘x’, ‘y’, ‘centroids’ contain its position and column ‘cluster’ is the
assigned cell annotation.

Return type AnnData

tangram.utils.df_to_cell_types

tangram.utils.df_to_cell_types(df, cell_types)
Utility function that “randomly” assigns cell coordinates in a voxel to known numbers of cell types in that voxel.
Used for deconvolution.

Parameters
• df (DataFrame) – Columns correspond to cell types. Each row in the DataFrame corre-

sponds to a voxel and specifies the known number of cells in that voxel for each cell type
(int). The additional column ‘centroids’ specifies the coordinates of the cells in the voxel
(sequence of (x,y) pairs).

• cell_types (sequence) – Sequence of cell type names to be considered for deconvolution.
Columns in ‘df’ not included in ‘cell_types’ are ignored for assignment.

Returns A dictionary <cell type name> -> <list of (x,y) coordinates for the cell type>

3.3. Classes 21

Tangram, Release 0.4.0

tangram.utils.eval_metric

tangram.utils.eval_metric(df_all_genes, test_genes=None)
Compute metrics on given test_genes set for evaluation

Parameters
• df_all_genes (Pandas dataframe) – returned by compare_spatial_geneexp(adata_ge,

adata_sp);

• test_genes (list) – list of test genes, if not given, test_genes will be set to genes where
‘is_training’ field is False

Returns dict with values of each evaluation metric (“avg_test_score”, “avg_train_score”,
“auc_score”), tuple of auc fitted coordinates and raw coordinates(test_score vs. sparsity_sp co-
ordinates)

tangram.utils.get_matched_genes

tangram.utils.get_matched_genes(prior_genes_names, sn_genes_names, excluded_genes=None)
Given the list of genes in the spatial data and the list of genes in the single nuclei, identifies the subset of genes
included in both lists and returns the corresponding matching indices.

Parameters
• prior_genes_names (sequence) – List of gene names in the spatial data.

• sn_genes_names (sequence) – List of gene names in the single nuclei data.

• excluded_genes (sequence) – Optional. List of genes to be excluded. These genes are
excluded even if present in both datasets. If None, no genes are excluded. Default is None.

Returns
mask_prior_indices (list): List of indices for the selected genes in ‘prior_genes_names’.

mask_sn_indices (list): List of indices for the selected genes in ‘sn_genes_names’.
selected_genes (list): List of names of the selected genes.

For each i, selected_genes[i] = prior_genes_names[mask_prior_indices[i]] =
sn_genes_names[mask_sn_indices[i].

Return type A tuple (mask_prior_indices, mask_sn_indices, selected_genes), with

tangram.utils.one_hot_encoding

tangram.utils.one_hot_encoding(l, keep_aggregate=False)
Given a sequence, returns a DataFrame with a column for each unique value in the sequence and a one-hot-
encoding.

Parameters
• l (sequence) – List to be transformed.

• keep_aggregate (bool) – Optional. If True, the output includes an additional column for
the original list. Default is False.

Returns
A DataFrame with a column for each unique value in the sequence and a one-hot-encoding, and an additional

column with the input list if ‘keep_aggregate’ is True. The number of rows are equal to
len(l).

22 Chapter 3. Release Notes

Tangram, Release 0.4.0

tangram.utils.project_cell_annotations

tangram.utils.project_cell_annotations(adata_map, adata_sp, annotation='cell_type', threshold=0.5)
Transfer annotation from single cell data onto space.

Parameters
• adata_map (AnnData) – cell-by-spot AnnData returned by train function.

• adata_sp (AnnData) – spatial data used to save the mapping result.

• annotation (str) – Optional. Cell annotations matrix with shape (number_cells, num-
ber_annotations). Default is ‘cell_type’.

• threshold (float) – Optional. Valid for using with adata_map.obs[‘F_out’] from ‘con-
strained’ mode mapping. Cell’s probability below this threshold will be dropped. Default is
0.5.

Returns None. Update spatial Anndata by creating obsm tangram_ct_pred field with a dataframe
with spatial prediction for each annotation (number_spots, number_annotations)

tangram.utils.project_genes

tangram.utils.project_genes(adata_map, adata_sc, cluster_label=None, scale=True)
Transfer gene expression from the single cell onto space.

Parameters
• adata_map (AnnData) – single cell data

• adata_sp (AnnData) – gene spatial data

• cluster_label (AnnData) – Optional. Should be consistent with the ‘cluster_label’ argu-
ment passed to map_cells_to_space function.

• scale (bool) – Optional. Should be consistent with the ‘scale’ argument passed to
map_cells_to_space function.

Returns spot-by-gene AnnData containing spatial gene expression from the single cell data.

Return type AnnData

tangram.utils.read_pickle

tangram.utils.read_pickle(filename)
Helper to read pickle file which may be zipped or not.

Parameters filename (str) – A valid string path.

Returns The file object.

3.3. Classes 23

Tangram, Release 0.4.0

tangram.utils.transfer_annotations_prob

tangram.utils.transfer_annotations_prob(mapping_matrix, to_transfer)
Transfer cell annotations onto space through a mapping matrix.

Parameters
• mapping_matrix (ndarray) – Mapping matrix with shape (number_cells, number_spots).

• to_transfer (ndarray) – Cell annotations matrix with shape (number_cells, num-
ber_annotations).

Returns A matrix of annotations onto space, with shape (number_spots, number_annotations)

tangram.utils.transfer_annotations_prob_filter

tangram.utils.transfer_annotations_prob_filter(mapping_matrix, filter, to_transfer)
Transfer cell annotations onto space through a mapping matrix and a filter. :param mapping_matrix: Mapping
matrix with shape (number_cells, number_spots). :type mapping_matrix: ndarray :param filter: Filter with shape
(number_cells,). :type filter: ndarray :param to_transfer: Cell annotations matrix with shape (number_cells,
number_annotations). :type to_transfer: ndarray

Returns A matrix of annotations onto space, with shape (number_spots, number_annotations).

3.4 Frequently Asked Questions

Do I need a GPU for running Tangram?
A GPU is not required but is recommended. We run most of our mappings on a single P100 which maps ~50k cells in
a few minutes.

How do I choose a list of training genes?
A good way to start is to use the top 1k unique marker genes, stratified across cell types, as training genes. Alternatively,
you can map using the whole transcriptome. Ideally, training genes should contain high quality signals: if most training
genes are rich in dropouts or obtained with bad RNA probes your mapping will not be accurate.

Do I need cell segmentation for mapping on Visium data?
You do not need to segment cells in your histology for mapping on spatial transcriptomics data (including Visium and
Slide-seq). You need, however, cell segmentation if you wish to deconvolve the data (_ie_ deterministically assign a
single cell profile to each cell within a spatial voxel).

I run out of memory when I map: what should I do?
Reduce your spatial data in various parts and map each single part. If that is not sufficient, you will need to downsample
your single cell data as well.

24 Chapter 3. Release Notes

Tangram, Release 0.4.0

3.5 Tutorials

3.5.1 Tutorial for mapping data with Tangram

by Tommaso Biancalani biancalt@gene.com and Ziqing Lu luz21@gene.com

• The notebook introduces to mapping single cell data on spatial data using the Tangram method.

• The notebook uses data from mouse brain cortex (different than those adopted in the manuscript).

Last changelog

• June 13th - Tommaso Biancalani biancalt@gene.com

Installation

• Make sure tangram-sc is installed via pip install tangram-sc.

• Otherwise, edit and uncomment the line starting with sys.path specifying the Tangram folder.

• The Python environment needs to install the packages listed in environment.yml.

[1]: import os, sys
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import scanpy as sc
import torch
sys.path.append('./') # uncomment for local import
import tangram as tg

%load_ext autoreload
%autoreload 2
%matplotlib inline

tg.__version__

[1]: '1.0.0'

Download the data

• If you have wget installed, you can run the following code to automatically download and unzip the data.

[2]: # Skip this cells if data are already downloaded
!wget https://storage.googleapis.com/tommaso-brain-data/tangram_demo/mop_sn_tutorial.
→˓h5ad.gz -O data/mop_sn_tutorial.h5ad.gz
!wget https://storage.googleapis.com/tommaso-brain-data/tangram_demo/slideseq_MOp_1217.
→˓h5ad.gz -O data/slideseq_MOp_1217.h5ad.gz

(continues on next page)

3.5. Tutorials 25

mailto:biancalt@gene.com
mailto:luz21@gene.com
mailto:biancalt@gene.com

Tangram, Release 0.4.0

(continued from previous page)

!wget https://storage.googleapis.com/tommaso-brain-data/tangram_demo/MOp_markers.csv -O␣
→˓data/MOp_markers.csv
!gunzip -f data/mop_sn_tutorial.h5ad.gz
!gunzip -f data/slideseq_MOp_1217.h5ad.gz

--2021-11-03 14:35:06-- https://storage.googleapis.com/tommaso-brain-data/tangram_demo/
→˓mop_sn_tutorial.h5ad.gz
Resolving storage.googleapis.com (storage.googleapis.com)... 172.217.6.48, 172.217.6.80,␣
→˓142.250.72.208, ...
Connecting to storage.googleapis.com (storage.googleapis.com)|172.217.6.48|:443...␣
→˓connected.
HTTP request sent, awaiting response... 200 OK
Length: 474724402 (453M) [application/x-gzip]
Saving to: ‘data/mop_sn_tutorial.h5ad.gz’

100%[======================================>] 474,724,402 123MB/s in 3.8s

2021-11-03 14:35:10 (118 MB/s) - ‘data/mop_sn_tutorial.h5ad.gz’ saved [474724402/
→˓474724402]

--2021-11-03 14:35:10-- https://storage.googleapis.com/tommaso-brain-data/tangram_demo/
→˓slideseq_MOp_1217.h5ad.gz
Resolving storage.googleapis.com (storage.googleapis.com)... 172.217.6.48, 172.217.6.80,␣
→˓142.250.72.208, ...
Connecting to storage.googleapis.com (storage.googleapis.com)|172.217.6.48|:443...␣
→˓connected.
HTTP request sent, awaiting response... 200 OK
Length: 12614106 (12M) [application/x-gzip]
Saving to: ‘data/slideseq_MOp_1217.h5ad.gz’

100%[======================================>] 12,614,106 --.-K/s in 0.1s

2021-11-03 14:35:11 (116 MB/s) - ‘data/slideseq_MOp_1217.h5ad.gz’ saved [12614106/
→˓12614106]

--2021-11-03 14:35:11-- https://storage.googleapis.com/tommaso-brain-data/tangram_demo/
→˓MOp_markers.csv
Resolving storage.googleapis.com (storage.googleapis.com)... 172.217.6.48, 172.217.6.80,␣
→˓142.250.72.208, ...
Connecting to storage.googleapis.com (storage.googleapis.com)|172.217.6.48|:443...␣
→˓connected.
HTTP request sent, awaiting response... 200 OK
Length: 2510 (2.5K) [text/csv]
Saving to: ‘data/MOp_markers.csv’

100%[======================================>] 2,510 --.-K/s in 0s

2021-11-03 14:35:11 (13.0 MB/s) - ‘data/MOp_markers.csv’ saved [2510/2510]

• If you do not have wget installed, manually download data from the links below:

– snRNA-seq datasets collected from adult mouse cortex: 10Xv3 MOp.

26 Chapter 3. Release Notes

https://storage.googleapis.com/tommaso-brain-data/tangram_demo/mop_sn_tutorial.h5ad.gz

Tangram, Release 0.4.0

– For spatial data, we will use one coronal slice of Slide-seq2 data (adult mouse brain; MOp area).

– We will map them via a few hundred marker genes, found in literature.

– All datasets need to be unzipped: resulting h5ad and csv files should be placed in the data folder.

Load spatial data

• Spatial data need to be organized as a voxel-by-gene matrix. Here, Slide-seq data contains 9852 spatial voxels,
in each of which there are 24518 genes measured.

[3]: path = os.path.join('./data', 'slideseq_MOp_1217.h5ad')
ad_sp = sc.read_h5ad(path)
ad_sp

[3]: AnnData object with n_obs × n_vars = 9852 × 24518
obs: 'orig.ident', 'nCount_RNA', 'nFeature_RNA', 'x', 'y'

• The voxel coordinates are saved in the fields obs.x and obs.y which we can use to visualize the spatial ROI.
Each “dot” is the center of a 10um voxel.

[4]: xs = ad_sp.obs.x.values
ys = ad_sp.obs.y.values
plt.axis('off')
plt.scatter(xs, ys, s=.7);
plt.gca().invert_yaxis()

3.5. Tutorials 27

https://storage.googleapis.com/tommaso-brain-data/tangram_demo/slideseq_MOp_1217.h5ad.gz
https://storage.googleapis.com/tommaso-brain-data/tangram_demo/MOp_markers.csv
https://www.biorxiv.org/content/10.1101/2020.06.04.105700v1

Tangram, Release 0.4.0

Single cell data

• By single cell data, we generally mean either scRNAseq or snRNAseq.

• We start by mapping the MOp 10Xv3 dataset, which contains single nuclei collected from a posterior region of
the primary motor cortex.

• They are approximately 26k profiled cells with 28k genes.

[5]: path = os.path.join('data','mop_sn_tutorial.h5ad')
ad_sc = sc.read_h5ad(path)
ad_sc

[5]: AnnData object with n_obs × n_vars = 26431 × 27742
obs: 'QC', 'batch', 'class_color', 'class_id', 'class_label', 'cluster_color',

→˓'cluster_labels', 'dataset', 'date', 'ident', 'individual', 'nCount_RNA', 'nFeature_RNA
→˓', 'nGene', 'nUMI', 'project', 'region', 'species', 'subclass_id', 'subclass_label'

layers: 'logcounts'

• Usually, we work with data in raw count form, especially if the spatial data are in raw count form as well.

• If the data are in integer format, that probably means they are in raw count.

[6]: np.unique(ad_sc.X.toarray()[0, :])

[6]: array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.,
11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21.,
22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 33.,
34., 36., 39., 40., 43., 44., 46., 47., 49., 50., 53.,
56., 57., 58., 62., 68., 69., 73., 77., 80., 85., 86.,
98., 104., 105., 118., 121., 126., 613.], dtype=float32)

• Here, we only do some light pre-processing as library size correction (in scanpy, via sc.pp.normalize) to
normalize the number of count within each cell to a fixed number.

• Sometimes, we apply more sophisticated pre-processing methods, for example for batch correction, although
mapping works great with raw data.

• Ideally, the single cell and spatial datasets, should exhibit signals as similar as possible and the pre-processing
pipeline should be finalized to harmonize the signals.

[7]: sc.pp.normalize_total(ad_sc)

• It is a good idea to have annotations in the single cell data, as they will be projected on space after we map.

• In this case, cell types are annotated in the subclass_label field, for which we plot cell counts.

• Note that cell type proportion should be similar in the two datasets: for example, if Meis is a rare cell type in the
snRNA-seq then it is expected to be a rare one even in the spatial data as well.

[8]: ad_sc.obs.subclass_label.value_counts()

[8]: L5 IT 5623
Oligo 4330
L2/3 IT 3555
L6 CT 3118
Astro 2600
Micro-PVM 1121
Pvalb 972

(continues on next page)

28 Chapter 3. Release Notes

Tangram, Release 0.4.0

(continued from previous page)

L6 IT 919
L5 ET 903
L5/6 NP 649
Sst 627
Vip 435
L6b 361
Endo 357
Lamp5 332
VLMC 248
Peri 187
Sncg 94
Name: subclass_label, dtype: int64

Prepare to map

• Tangram learns a spatial alignment of the single cell data so that the gene expression of the aligned single cell
data is as similar as possible to that of the spatial data.

• In doing this, Tangram only looks at a subset genes, specified by the user, called the training genes.

• The choice of the training genes is a delicate step for mapping: they need to bear interesting signals and to be
measured with high quality.

• Typically, a good start is to choose 100-1000 top marker genes, evenly stratified across cell types. Sometimes,
we also use the entire transcriptome, or perform different mappings using different set of training genes to see
how much the result change.

• For this case, we choose 253 marker genes of the MOp area which were curated in a different study.

[9]: df_genes = pd.read_csv('data/MOp_markers.csv', index_col=0)
markers = np.reshape(df_genes.values, (-1,))
markers = list(markers)
len(markers)

[9]: 253

• We now need to prepare the datasets for mapping by creating training_genes field in uns dictionary of the
two AnnData structures.

• This training_genes field contains genes subset on the list of training genes. This field will be used later
inside the mapping function to create training datasets.

• Also, the gene order needs to be the same in the datasets. This is because Tangram maps using only gene
expression, so the 𝑗-th column in each matrix must correspond to the same gene.

• And if data entries of a gene are all zero, this gene will be removed

• This task is performed by the helper pp_adatas.

[10]: tg.pp_adatas(ad_sc, ad_sp, genes=markers)

INFO:root:249 training genes are saved in `uns``training_genes` of both single cell and␣
→˓spatial Anndatas.
INFO:root:18000 overlapped genes are saved in `uns``overlap_genes` of both single cell␣
→˓and spatial Anndatas.

(continues on next page)

3.5. Tutorials 29

https://www.biorxiv.org/content/10.1101/2020.06.04.105700v1

Tangram, Release 0.4.0

(continued from previous page)

INFO:root:uniform based density prior is calculated and saved in `obs``uniform_density`␣
→˓of the spatial Anndata.
INFO:root:rna count based density prior is calculated and saved in `obs``rna_count_based_
→˓density` of the spatial Anndata.

• You’ll now notice that the two datasets now contain 249 genes, but 253 markers were provided.

• This is because the marker genes need to be shared by both dataset. If a gene is missing, pp_adatas will just
take it out.

• Finally, the assert line below is a good way to ensure that the genes in the training_genes field in uns are
actually ordered in both AnnDatas.

[11]: ad_sc

[11]: AnnData object with n_obs × n_vars = 26431 × 26496
obs: 'QC', 'batch', 'class_color', 'class_id', 'class_label', 'cluster_color',

→˓'cluster_labels', 'dataset', 'date', 'ident', 'individual', 'nCount_RNA', 'nFeature_RNA
→˓', 'nGene', 'nUMI', 'project', 'region', 'species', 'subclass_id', 'subclass_label'

var: 'n_cells'
uns: 'training_genes', 'overlap_genes'
layers: 'logcounts'

[12]: ad_sp

[12]: AnnData object with n_obs × n_vars = 9852 × 20864
obs: 'orig.ident', 'nCount_RNA', 'nFeature_RNA', 'x', 'y', 'uniform_density', 'rna_

→˓count_based_density'
var: 'n_cells'
uns: 'training_genes', 'overlap_genes'

[13]: assert ad_sc.uns['training_genes'] == ad_sp.uns['training_genes']

Map

• We can now train the model (ie map the single cell data onto space).

• Mapping should be interrupted after the score plateaus,which can be controlled by passing the num_epochs
parameter.

• The score measures the similarity between the gene expression of the mapped cells vs spatial data: higher score
means better mapping.

• Note that we obtained excellent mapping even if Tangram converges to a low scores (the typical case is when the
spatial data are very sparse): we use the score merely to assess convergence.

• If you are running Tangram with a GPU, uncomment device=cuda:0 and comment the line device=cpu. On
a MacBook Pro 2018, it takes ~1h to run. On a P100 GPU it should be done in a few minutes.

• For this basic mapping, we do not use regularizers. More sophisticated loss functions can be used using the
Tangram library (refer to manuscript or dive into the code). For example, you can pass your density_priorwith
the hyperparameter lambda_d to regularize the spatial density of cells. Currently uniform, rna_count_based
and customized input array are supported for density_prior argument.

30 Chapter 3. Release Notes

Tangram, Release 0.4.0

• Instead of mapping single cells, we can “average” the cells within a cluster and map the averaged cells instead,
which drammatically improves performances. This suggestion was proposed by Sten Linnarsson. To activate
this mode, select mode='clusters' and pass the annotation field to cluster_label.

[14]: ad_map = tg.map_cells_to_space(
adata_sc=ad_sc,
adata_sp=ad_sp,
#device='cpu',
device='cuda:0',

)

INFO:root:Allocate tensors for mapping.
INFO:root:Begin training with 249 genes and rna_count_based density_prior in cells␣
→˓mode...
INFO:root:Printing scores every 100 epochs.

Score: 0.103, KL reg: 0.558
Score: 0.781, KL reg: 0.014
Score: 0.808, KL reg: 0.006
Score: 0.813, KL reg: 0.005
Score: 0.815, KL reg: 0.005
Score: 0.817, KL reg: 0.005
Score: 0.817, KL reg: 0.005
Score: 0.818, KL reg: 0.005
Score: 0.818, KL reg: 0.005
Score: 0.818, KL reg: 0.005

INFO:root:Saving results..

• The mapping results are stored in the returned AnnData structure, saved as ad_map, structured as following:

– The cell-by-spot matrix X contains the probability of cell 𝑖 to be in spot 𝑗.

– The obs dataframe contains the metadata of the single cells.

– The var dataframe contains the metadata of the spatial data.

– The uns dictionary contains a dataframe with various information about the training genes (saved ad
train_genes_df).

• We can now save the mapping results for post-analysis.

Analysis

• The most common application for mapping single cell data onto space is to transfer the cell type annotations onto
space.

• This is dona via plot_cell_annotation, which visualizes spatial probability maps of the annotation in the
obs dataframe (here, the subclass_label field). You can set robust argument to True and at the same time
set the perc argument to set the range to the colormap, which would help remove outliers.

• The following plots recover cortical layers of excitatory neurons and sparse patterns of glia cells. The boundaries
of the cortex are defined by layer 6b (cell type L6b) and oligodendrocytes are found concentrated into sub-cortical
region, as expected.

• Yet, the VLMC cell type patterns does not seem correct: VLMC cells are clustered in the first cortical layer,
whereas here are sparse in the ROI. This usually means that either (1) we have not used good marker genes for

3.5. Tutorials 31

Tangram, Release 0.4.0

VLMC cells in our training genes (2) the present marker genes are very sparse in the spatial data, therefore they
don’t contain good mapping signal.

[15]: tg.project_cell_annotations(ad_map, ad_sp, annotation='subclass_label')
annotation_list = list(pd.unique(ad_sc.obs['subclass_label']))
tg.plot_cell_annotation_sc(ad_sp, annotation_list,x='x', y='y',spot_size= 50, scale_
→˓factor=2,perc=0.02)

INFO:root:spatial prediction dataframe is saved in `obsm` `tangram_ct_pred` of the␣
→˓spatial AnnData.

• Let’s try to get a deeper sense of how good this mapping is. A good helper is plot_training_scores which
gives us four panels:

– The first panels is a histogram of the simlarity score for each training gene. Most genes are mapped with
very high similarity (> .9) although few of them have score ~.5. We would like to understand why for these
genes the score is lower.

– The second panel shows that there is a neat correlation between the training score of a gene (y-axis) and
the sparsity of that gene in the snRNA-seq data (x-axis). Each dot is a training gene. The trend is that the
sparser the gene the higher the score: this usually happens because very sparse gene are easier to map, as
their pattern is matched by placing a few “jackpot cells” in the right spots.

32 Chapter 3. Release Notes

Tangram, Release 0.4.0

– The third panel is similar to the second one, but contains the gene sparsity of the spatial data. Spatial
data are usually more sparse than single cell data, a discrepancy which is often responsible for low quality
mapping.

– In the last panel, we show the training scores as a function of the difference in sparsity between the dataset.
For genes with comparable sparsity, the mapped gene expression is very similar to that in the spatial data.
However, if a gene is quite sparse in one dataset (typically, the spatial data) but not in other, the mapping
score is lower. This occurs as Tangram cannot properly matched the gene pattern because of inconsistent
amount of dropouts between the datasets.

[16]: tg.plot_training_scores(ad_map, bins=10, alpha=.5)

• Although the above plots give us a summary of scores at single-gene level, we would need to know which are the
genes are mapped with low scores.

• These information can be access from the dataframe .uns['train_genes_df'] from the mapping results; this
is the dataframe used to build the four plots above.

• We want to inspect gene expression of training genes mapped with low scores, to understand the quality of
mapping.

• First, we need to generate “new spatial data” using the mapped single cell: this is done via project_genes.

• The function accepts as input a mapping (adata_map) and corresponding single cell data (adata_sc).

• The result is a voxel-by-gene AnnData, formally similar to ad_sp, but containing gene expression from the
mapped single cell data rather than Slide-seq.

[18]: ad_ge = tg.project_genes(adata_map=ad_map, adata_sc=ad_sc)
ad_ge

[18]: AnnData object with n_obs × n_vars = 9852 × 26496
obs: 'orig.ident', 'nCount_RNA', 'nFeature_RNA', 'x', 'y', 'uniform_density', 'rna_

→˓count_based_density'
var: 'n_cells', 'sparsity', 'is_training'
uns: 'training_genes', 'overlap_genes'

• We now choose a few training genes mapped with low score.

[19]: genes = ['rgs6', 'satb2', 'cdh12']
ad_map.uns['train_genes_df'].loc[genes]

[19]: train_score sparsity_sc sparsity_sp sparsity_diff
rgs6 0.462164 0.305172 0.941941 0.636769
satb2 0.501113 0.455904 0.969549 0.513645
cdh12 0.417188 0.384889 0.972594 0.587705

• To visualize gene patterns, we use the helper plot_genes. This function accepts two voxel-by-gene AnnData:

3.5. Tutorials 33

Tangram, Release 0.4.0

the actual spatial data (adata_measured), and a Tangram spatial prediction (adata_predicted). The function
returns gene expression maps from the two spatial AnnData on the genes genes.

• As expected, the predited gene expression is less sparse albeit the main patterns are captured. For these genes,
we trust more the mapped gene patterns, as Tangram “corrects” gene expression by aligning in space less sparse
data.

[20]: tg.plot_genes_sc(genes, adata_measured=ad_sp, adata_predicted=ad_ge, spot_size=50,scale_
→˓factor=0.1, perc=0.02, return_figure=False)

• An even stronger example is found in genes that are not detected in the spatial data, but are detected in the single
cell data. They are removed before training with pp_adatas function. But tangram could still generate insight
on how the spatial patterns look like.

[21]: genes=['mrgprx2', 'muc20', 'chrna2']
tg.plot_genes_sc(genes, adata_measured=ad_sp, adata_predicted=ad_ge, spot_size=50, scale_
→˓factor=0.1, perc=0.02, return_figure=False)

34 Chapter 3. Release Notes

Tangram, Release 0.4.0

• So far, we only inspected genes used to align the data (training genes), but the mapped single cell data, ad_ge
contains the whole transcriptome. That includes more than 26k test genes.

[22]: (ad_ge.var.is_training == False).sum()

[22]: 26247

• We can use plot_genes to inspect gene expression of non training genes. This is an essential step as prediction
of gene expression is the how we validate mapping.

• Before doing that, it is convenient to compute the similarity scores of all genes, which can be done by
compare_spatial_geneexp. This function accepts two spatial AnnDatas (ie voxel-by-gene), and returns a
dataframe with simlarity scores for all genes. Training genes are flagged by the Boolean field is_training.

• If we also pass single cell AnnData to compare_spatial_geneexp function like below, a dataframe with ad-
ditional sparsity columns - sparsity_sc (single cell data sparsity) and sparsity_diff (spatial data sparsity - single
cell data sparsity) will return. This is required if we want to call plot_test_scores function later with the

3.5. Tutorials 35

Tangram, Release 0.4.0

returned datafrme from compare_spatial_geneexp function.

[23]: df_all_genes = tg.compare_spatial_geneexp(ad_ge, ad_sp, ad_sc)
df_all_genes

[23]: score is_training sparsity_sp sparsity_sc \
igf2 9.996735e-01 True 0.994011 0.999924
chodl 9.967118e-01 True 0.999086 0.999016
5031425f14rik 9.963596e-01 True 0.999594 0.998789
car3 9.943125e-01 True 0.999695 0.999016
scgn 9.935710e-01 True 0.999898 0.999205
...
gm3376 1.477303e-08 False 0.999898 0.999962
gm21317 1.057379e-08 False 0.999898 0.999962
sprr2d 9.872679e-09 False 0.999898 0.999962
cd69 7.458404e-09 False 0.999898 0.999962
cyp1a2 7.139468e-09 False 0.999898 0.999962

sparsity_diff
igf2 -0.005913
chodl 0.000070
5031425f14rik 0.000805
car3 0.000679
scgn 0.000693
... ...
gm3376 -0.000064
gm21317 -0.000064
sprr2d -0.000064
cd69 -0.000064
cyp1a2 -0.000064

[18000 rows x 5 columns]

• The plot below give us a summary of scores at single-gene level for test genes

[24]: tg.plot_auc(df_all_genes)

<Figure size 432x288 with 0 Axes>

• Let’s plot the scores of the test genes and see how they compare to the training genes. Following the strategy in
the previous plots, we visualize the scores as a function of the sparsity of the spatial data.

36 Chapter 3. Release Notes

Tangram, Release 0.4.0

• (We have not wrapped this call into a function yet).

• Again, sparser genes in the spatial data are predicted with low scores, which is due to the presence of dropouts
in the spatial data.

• Let’s choose a few test genes with varied scores and compared predictions vs measured gene expression.

[25]: genes = ['snap25', 'atp1b1', 'atp1a3', 'ctgf', 'nefh', 'aak1', 'fa2h',]
df_all_genes.loc[genes]

[25]: score is_training sparsity_sp sparsity_sc sparsity_diff
snap25 0.897492 False 0.402253 0.120048 0.282205
atp1b1 0.824424 False 0.579984 0.175778 0.404205
atp1a3 0.753856 False 0.658343 0.319587 0.338757
ctgf 0.585824 False 0.981628 0.948243 0.033386
nefh 0.536002 False 0.909156 0.916083 -0.006928
aak1 0.538055 False 0.868047 0.179713 0.688334
fa2h 0.363725 False 0.972493 0.860845 0.111648

• We can use again plot_genes to visualize gene patterns.

• Interestingly, the agreement for genes Atp1b1 or Apt1a3, seems less good than that for Ctgf and Nefh, despite
the scores are higher for the former genes. This is because even though the latter gene patterns are localized
correctly, their expression values are not so well correlated (for instance, in Ctgf the “bright yellow spot” is in
different part of layer 6b). In contrast, for Atpb1 the gene expression pattern is largely recover, even though the
overall gene expression in the spatial data is more dim.

[26]: tg.plot_genes_sc(genes, adata_measured=ad_sp, adata_predicted=ad_ge, spot_size=50,scale_
→˓factor=0.1, perc=0.02, return_figure=False)

3.5. Tutorials 37

Tangram, Release 0.4.0

38 Chapter 3. Release Notes

Tangram, Release 0.4.0

Leave-One-Out Cross Validation (LOOCV)

• If number of genes is small, Leave-One-Out cross validation (LOOCV) is supported in Tangram to evaluate
mapping performance.

• LOOCV supported by Tangram:

– Assume the number of genes we have in the dataset is N.

– LOOCV would iterate over and map on the genes dataset N times.

– Each time it hold out one gene as test gene (1 test gene) and trains on the rest of all genes (N-1 training
genes).

– After all trainings are done, average test/train score will be computed to evaluate the mapping performance.

• Assume all genes we have is the training genes in the example above. Here we demo the LOOCV mapping at
cluster level.

• Restart the kernel and load single cell, spatial and gene markers data

• Run pp_adatas to prepare data for mapping

[2]: import os, sys
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scanpy as sc
import torch
import tangram as tg

[3]: path = os.path.join('data', 'slideseq_MOp_1217.h5ad')
ad_sp = sc.read_h5ad(path)

path = os.path.join('data','mop_sn_tutorial.h5ad')
ad_sc = sc.read_h5ad(path)
sc.pp.normalize_total(ad_sc)

df_genes = pd.read_csv('data/MOp_markers.csv', index_col=0)
markers = np.reshape(df_genes.values, (-1,))
markers = list(markers)

tg.pp_adatas(ad_sc, ad_sp, genes=markers)

INFO:root:249 training genes are saved in `uns``training_genes` of both single cell and␣
→˓spatial Anndatas.
INFO:root:18000 overlapped genes are saved in `uns``overlap_genes` of both single cell␣
→˓and spatial Anndatas.
INFO:root:uniform based density prior is calculated and saved in `obs``uniform_density`␣
→˓of the spatial Anndata.
INFO:root:rna count based density prior is calculated and saved in `obs``rna_count_based_
→˓density` of the spatial Anndata.

3.5. Tutorials 39

Tangram, Release 0.4.0

[4]: cv_dict, ad_ge_cv, df = tg.cross_val(ad_sc,
ad_sp,
device='cuda:0',
mode='clusters',
cv_mode='loo',
num_epochs=1000,
cluster_label='subclass_label',
return_gene_pred=True,
verbose=False,
)

100%|| 249/249 [22:51<00:00, 5.51s/it]

cv avg test score 0.185
cv avg train score 0.296

• cross_val function will return cv_dict and ad_ge_cv and df_test_genes in LOOCV mode. cv_dict con-
tains the average score for cross validation, ad_ge_cv stores the predicted expression value for each gene, and
df_test_genes contains scores and sparsity for each test genes.

[5]: cv_dict

[5]: {'avg_test_score': 0.1850259, 'avg_train_score': 0.29603068225355034}

• We can use plot_test_scores to display an overview of the cross validation test scores of each gene vs.
sparsity.

[6]: tg.plot_test_scores(df, bins=10, alpha=.7)

• Now, let’s compare a few genes between their ground truth and cross-validation predicted spatial pattern by
calling the function plot_genes

[7]: ad_ge_cv.var.sort_values(by='test_score', ascending=False)

[7]: test_score
gad1 0.612823
gad2 0.538168
slc17a7 0.507538
vtn 0.503739
pvalb 0.498329
... ...
5031425f14rik 0.015661
prok2 0.008919
teddm3 0.003758

(continues on next page)

40 Chapter 3. Release Notes

Tangram, Release 0.4.0

(continued from previous page)

scgn 0.002896
dnase1l3 0.000652

[249 rows x 1 columns]

[8]: ranked_genes = list(ad_ge_cv.var.sort_values(by='test_score', ascending=False).index.
→˓values)
top_genes = ranked_genes[:3]
bottom_genes = ranked_genes[-3:]

[11]: tg.plot_genes_sc(genes=top_genes, adata_measured=ad_sp, adata_predicted=ad_ge_cv, x = 'x
→˓', y='y',spot_size=50,scale_factor=0.1, perc=0.02, return_figure=False)

3.5. Tutorials 41

Tangram, Release 0.4.0

[12]: tg.plot_genes_sc(genes=bottom_genes, adata_measured=ad_sp, adata_predicted=ad_ge_cv,x='x
→˓', y='y', spot_size=50,scale_factor=0.1, perc=0.02, return_figure=False)

42 Chapter 3. Release Notes

Tangram, Release 0.4.0

3.5.2 Tutorial for spatial mapping using Tangram

• by Ziqing Lu luz21@gene.com and Tommaso Biancalani biancalt@gene.com.

• Last update: August 16th 2021

What is Tangram?

Tangram is a method for mapping single-cell (or single-nucleus) gene expression data onto spatial gene expression data.
Tangram takes as input a single-cell dataset and a spatial dataset, collected from the same anatomical region/tissue type.
Via integration, Tangram creates new spatial data by aligning the scRNAseq profiles in space. This allows to project
every annotation in the scRNAseq (e.g. cell types, program usage) on space.

What do I use Tangram for?

The most common application of Tangram is to resolve cell types in space. Another usage is to correct gene expression
from spatial data: as scRNA-seq data are less prone to dropout than (e.g.) Visium or Slide-seq, the “new” spatial data
generated by Tangram resolve many more genes. As a result, we can visualize program usage in space, which can be
used for ligand-receptor pair discovery or, more generally, cell-cell communication mechanisms. If cell segmentation
is available, Tangram can be also used for deconvolution of spatial data. If your single cell are multimodal, Tangram
can be used to spatially resolve other modalities, such as chromatin accessibility.

Frequently Asked Questions about Tangram

How is Tangram different, than all the other deconvolution/mapping method?

• Validation. Most methods “validate” mappings by looking at known patterns or proportion of cell types. These
are good sanity checks, but are hardly useful when mapping is used for discovery. In Tangram, mappings are
validated by inspective the predictions of holdout genes (test transcriptome).

My scRNAseq/spatial data come from different samples. Can I still use Tangram?

• Yes. There is a clever variation invented by Sten Linnarsson, which consists of mapping average cells of a
certain cell type, rather than single cells. This method is much faster, and smooths out variation in biological
signal from different samples via averaging. However, it requires annotated scRNA-seq, sacrifices resolving
biological variability at single-cell level. To map this way, pass mode=cluster.

Does Tangram only work on mouse brain data?

• No. The original manuscript focused on mouse brain data b/c was funded by BICCN. We subsequently used
Tangram for mapping lung, kidney and cancer tissue. If mapping doesn’t work for your case, that is hardly due
to the complexity of the tissue.

3.5. Tutorials 43

mailto:luz21@gene.com
mailto:biancalt@gene.com
http://linnarssonlab.org/

Tangram, Release 0.4.0

Why doesn’t Tangram have hypotheses on the underlying model?

• Most models used in biology are probabilistic: they assume that data are generated according to a certain proba-
bility distribution, hence the hypothesis. But Tangram doesn’t work that way: the hypothesis is that scRNA-seq
and spatial data are generated with the same process (i.e. same biology) regardless of the process.

Where do I learn more about Tangram?

• Check out our documentation for learning more about the method, or our GitHub repo for the latest version of
the code. Tangram has been released in :cite:`tangram`.

Setting up

Tangram is based on pytorch, scanpy and (optionally but highly-recommended) squidpy - this tutorial is designed to
work with squidy. You can also check this tutorial, prior to integration with squidpy.

• To run the notebook locally, create a conda environment as conda env create -f tangram_environment.
yml using our YAML file.

• This notebook is based on squidpy v1.1.0.

[1]: import scanpy as sc
import squidpy as sq
import numpy as np
import pandas as pd
from anndata import AnnData
import pathlib
import matplotlib.pyplot as plt
import matplotlib as mpl
import skimage
import seaborn as sns
import tangram as tg

sc.logging.print_header()
print(f"squidpy=={sq.__version__}")

%load_ext autoreload
%autoreload 2
%matplotlib inline

scanpy==1.8.1 anndata==0.7.6 umap==0.5.1 numpy==1.19.1 scipy==1.5.2 pandas==1.3.4 scikit-
→˓learn==0.24.2 statsmodels==0.12.2 python-igraph==0.9.8 pynndescent==0.5.4
squidpy==1.1.2

44 Chapter 3. Release Notes

https://tangram-sc.readthedocs.io/
https://github.com/broadinstitute/Tangram
https://github.com/broadinstitute/Tangram/blob/master/tangram_tutorial.ipynb
https://github.com/theislab/squidpy_notebooks/blob/master/envs/tangram_environment.yml

Tangram, Release 0.4.0

Loading datasets

Load public data available in Squidpy, from mouse brain cortex. Single cell data are stored in adata_sc. Spatial data,
in adata_st.

[2]: adata_st = sq.datasets.visium_fluo_adata_crop()
adata_st = adata_st[

adata_st.obs.cluster.isin([f"Cortex_{i}" for i in np.arange(1, 5)])
].copy()
img = sq.datasets.visium_fluo_image_crop()

adata_sc = sq.datasets.sc_mouse_cortex()

We subset the crop of the mouse brain to only contain clusters of the brain cortex. The pre-processed single cell dataset
was taken from :cite:`tasic2018shared` and pre-processed with standard scanpy functions.

Let’s visualize both spatial and single-cell datasets.

[3]: adata_st.obs

[3]: in_tissue array_row array_col n_genes_by_counts \
AAATGGCATGTCTTGT-1 1 13 69 5191
AACAACTGGTAGTTGC-1 1 28 42 5252
AACAGGAAATCGAATA-1 1 15 67 6320
AACCCAGAGACGGAGA-1 1 15 39 3659
AACCGTTGTGTTTGCT-1 1 12 64 4512
...
TTGGATTGGGTACCAC-1 1 17 55 4980
TTGGCTCGCATGAGAC-1 1 23 37 4620
TTGTATCACACAGAAT-1 1 12 74 6120
TTGTGGCCCTGACAGT-1 1 18 60 4971
TTGTTAGCAAATTCGA-1 1 22 42 4820

log1p_n_genes_by_counts total_counts log1p_total_counts \
AAATGGCATGTCTTGT-1 8.554874 15977.0 9.678968
AACAACTGGTAGTTGC-1 8.566555 16649.0 9.720165
AACAGGAAATCGAATA-1 8.751633 23375.0 10.059465
AACCCAGAGACGGAGA-1 8.205218 9229.0 9.130215
AACCGTTGTGTTTGCT-1 8.414717 12679.0 9.447782
...
TTGGATTGGGTACCAC-1 8.513386 15381.0 9.640953
TTGGCTCGCATGAGAC-1 8.438366 13193.0 9.487517
TTGTATCACACAGAAT-1 8.719481 21951.0 9.996614
TTGTGGCCCTGACAGT-1 8.511577 14779.0 9.601030
TTGTTAGCAAATTCGA-1 8.480737 14396.0 9.574775

pct_counts_in_top_50_genes pct_counts_in_top_100_genes \
AAATGGCATGTCTTGT-1 20.629655 26.757213
AACAACTGGTAGTTGC-1 20.481711 26.277855
AACAGGAAATCGAATA-1 17.929412 23.850267
AACCCAGAGACGGAGA-1 25.939972 31.964460
AACCGTTGTGTTTGCT-1 21.839262 28.038489
...
TTGGATTGGGTACCAC-1 21.038944 27.059359
TTGGCTCGCATGAGAC-1 20.609414 26.445842

(continues on next page)

3.5. Tutorials 45

Tangram, Release 0.4.0

(continued from previous page)

TTGTATCACACAGAAT-1 18.199626 24.235798
TTGTGGCCCTGACAGT-1 21.381690 27.924758
TTGTTAGCAAATTCGA-1 20.595999 26.674076

pct_counts_in_top_200_genes pct_counts_in_top_500_genes \
AAATGGCATGTCTTGT-1 34.743694 48.889028
AACAACTGGTAGTTGC-1 34.092138 48.201093
AACAGGAAATCGAATA-1 32.077005 45.963636
AACCCAGAGACGGAGA-1 39.885145 53.212699
AACCGTTGTGTTTGCT-1 36.209480 50.540263
...
TTGGATTGGGTACCAC-1 35.114752 49.197061
TTGGCTCGCATGAGAC-1 34.063519 48.442356
TTGTATCACACAGAAT-1 32.440436 46.663022
TTGTGGCCCTGACAGT-1 36.213546 49.780093
TTGTTAGCAAATTCGA-1 34.655460 48.624618

total_counts_MT log1p_total_counts_MT pct_counts_MT \
AAATGGCATGTCTTGT-1 0.0 0.0 0.0
AACAACTGGTAGTTGC-1 0.0 0.0 0.0
AACAGGAAATCGAATA-1 0.0 0.0 0.0
AACCCAGAGACGGAGA-1 0.0 0.0 0.0
AACCGTTGTGTTTGCT-1 0.0 0.0 0.0
...
TTGGATTGGGTACCAC-1 0.0 0.0 0.0
TTGGCTCGCATGAGAC-1 0.0 0.0 0.0
TTGTATCACACAGAAT-1 0.0 0.0 0.0
TTGTGGCCCTGACAGT-1 0.0 0.0 0.0
TTGTTAGCAAATTCGA-1 0.0 0.0 0.0

n_counts leiden cluster
AAATGGCATGTCTTGT-1 15977.0 0 Cortex_1
AACAACTGGTAGTTGC-1 16649.0 0 Cortex_1
AACAGGAAATCGAATA-1 23375.0 0 Cortex_1
AACCCAGAGACGGAGA-1 9229.0 1 Cortex_2
AACCGTTGTGTTTGCT-1 12679.0 0 Cortex_1
...
TTGGATTGGGTACCAC-1 15381.0 0 Cortex_1
TTGGCTCGCATGAGAC-1 13193.0 5 Cortex_3
TTGTATCACACAGAAT-1 21951.0 0 Cortex_1
TTGTGGCCCTGACAGT-1 14779.0 0 Cortex_1
TTGTTAGCAAATTCGA-1 14396.0 5 Cortex_3

[324 rows x 17 columns]

[4]: fig, axs = plt.subplots(1, 2, figsize=(20, 5))
sc.pl.spatial(

adata_st, color="cluster", alpha=0.7, frameon=False, show=False, ax=axs[0]
)
sc.pl.umap(

adata_sc, color="cell_subclass", size=10, frameon=False, show=False, ax=axs[1]
)

(continues on next page)

46 Chapter 3. Release Notes

Tangram, Release 0.4.0

(continued from previous page)

plt.tight_layout()

Tangram learns a spatial alignment of the single cell data by looking at a subset of genes, specified by the user, called
the training genes. Training genes need to bear interesting signal and to be measured with high quality. Typically, we
choose the training genes are 100-1000 differentially expressedx genes, stratified across cell types. Sometimes, we also
use the entire transcriptome, or perform different mappings using different set of training genes to see how much the
result change.

Tangram fits the scRNA-seq profiles on space using a custom loss function based on cosine similarity. The method is
summarized in the sketch below:

figures/how_tangram_works.png

Pre-processing

For this case, we use 1401 marker genes as training genes.

[5]: sc.tl.rank_genes_groups(adata_sc, groupby="cell_subclass", use_raw=False)
markers_df = pd.DataFrame(adata_sc.uns["rank_genes_groups"]["names"]).iloc[0:100, :]
markers = list(np.unique(markers_df.melt().value.values))
len(markers)

WARNING: Default of the method has been changed to 't-test' from 't-test_overestim_var'

[5]: 1401

We prepares the data using pp_adatas, which does the following: - Takes a list of genes from user via the genes
argument. These genes are used as training genes. - Annotates training genes under the training_genes field, in uns
dictionary, of each AnnData. - Ensure consistent gene order in the datasets (Tangram requires that the the 𝑗-th column
in each matrix correspond to the same gene). - If the counts for a gene are all zeros in one of the datasets, the gene
is removed from the training genes. - If a gene is not present in both datasets, the gene is removed from the training
genes.

[6]: tg.pp_adatas(adata_sc, adata_st, genes=markers)

3.5. Tutorials 47

Tangram, Release 0.4.0

INFO:root:1280 training genes are saved in `uns``training_genes` of both single cell and␣
→˓spatial Anndatas.
INFO:root:14785 overlapped genes are saved in `uns``overlap_genes` of both single cell␣
→˓and spatial Anndatas.
INFO:root:uniform based density prior is calculated and saved in `obs``uniform_density`␣
→˓of the spatial Anndata.
INFO:root:rna count based density prior is calculated and saved in `obs``rna_count_based_
→˓density` of the spatial Anndata.

Two datasets contain 1280 training genes of the 1401 originally provided, as some training genes have been removed.

Find alignment

To find the optimal spatial alignment for scRNA-seq profiles, we use the map_cells_to_space function: - The
function maps iteratively as specified by num_epochs. We typically interrupt mapping after the score plateaus. -
The score measures the similarity between the gene expression of the mapped cells vs spatial data on the training
genes. - The default mapping mode is mode='cells', which is recommended to run on a GPU. - Alternatively, one
can specify mode='clusters' which averages the single cells beloning to the same cluster (pass annotations via
cluster_label). This is faster, and is our chioce when scRNAseq and spatial data come from different specimens. -
If you wish to run Tangram with a GPU, set device=cuda:0 otherwise use the set device=cpu. - density_prior
specifies the cell density within each spatial voxel. Use uniform if the spatial voxels are at single cell resolution (ie
MERFISH). The default value, rna_count_based, assumes that cell density is proportional to the number of RNA
molecules.

[7]: ad_map = tg.map_cells_to_space(adata_sc, adata_st,
mode="cells",

mode="clusters",
cluster_label='cell_subclass', # .obs field w cell types

density_prior='rna_count_based',
num_epochs=500,
device="cuda:0",
device='cpu',

)

INFO:root:Allocate tensors for mapping.
INFO:root:Begin training with 1280 genes and rna_count_based density_prior in cells␣
→˓mode...
INFO:root:Printing scores every 100 epochs.

Score: 0.613, KL reg: 0.001
Score: 0.733, KL reg: 0.000
Score: 0.736, KL reg: 0.000
Score: 0.737, KL reg: 0.000
Score: 0.737, KL reg: 0.000

INFO:root:Saving results..

The mapping results are stored in the returned AnnData structure, saved as ad_map, structured as following: - The
cell-by-spot matrix X contains the probability of cell i to be in spot j. - The obs dataframe contains the metadata
of the single cells. - The var dataframe contains the metadata of the spatial data. - The uns dictionary contains a
dataframe with various information about the training genes (saved as train_genes_df).

48 Chapter 3. Release Notes

Tangram, Release 0.4.0

Cell type maps

To visualize cell types in space, we invoke project_cell_annotation to transfer the annotation from the mapping
to space. We can then call plot_cell_annotation to visualize it. You can set the perc argument to set the range to
the colormap, which would help remove outliers.

[8]: ad_map

[8]: AnnData object with n_obs × n_vars = 21697 × 324
obs: 'sample_name', 'organism', 'donor_sex', 'cell_class', 'cell_subclass', 'cell_

→˓cluster', 'n_genes_by_counts', 'log1p_n_genes_by_counts', 'total_counts', 'log1p_total_
→˓counts', 'pct_counts_in_top_50_genes', 'pct_counts_in_top_100_genes', 'pct_counts_in_
→˓top_200_genes', 'pct_counts_in_top_500_genes', 'total_counts_mt', 'log1p_total_counts_
→˓mt', 'pct_counts_mt', 'n_counts'

var: 'in_tissue', 'array_row', 'array_col', 'n_genes_by_counts', 'log1p_n_genes_by_
→˓counts', 'total_counts', 'log1p_total_counts', 'pct_counts_in_top_50_genes', 'pct_
→˓counts_in_top_100_genes', 'pct_counts_in_top_200_genes', 'pct_counts_in_top_500_genes',
→˓ 'total_counts_MT', 'log1p_total_counts_MT', 'pct_counts_MT', 'n_counts', 'leiden',
→˓'cluster', 'uniform_density', 'rna_count_based_density'

uns: 'train_genes_df', 'training_history'

[9]: tg.project_cell_annotations(ad_map, adata_st, annotation="cell_subclass")
annotation_list = list(pd.unique(adata_sc.obs['cell_subclass']))
tg.plot_cell_annotation_sc(adata_st, annotation_list,perc=0.02)

INFO:root:spatial prediction dataframe is saved in `obsm` `tangram_ct_pred` of the␣
→˓spatial AnnData.

3.5. Tutorials 49

Tangram, Release 0.4.0

The first way to get a sense if mapping was successful is to look for known cell type patterns. To get a deeper sense,
we can use the helper plot_training_scores which gives us four panels:

[10]: tg.plot_training_scores(ad_map, bins=20, alpha=.5)

50 Chapter 3. Release Notes

Tangram, Release 0.4.0

• The first panel is a histogram of the simlarity scores for each training gene.

• In the second panel, each dot is a training gene and we can observe the training score (y-axis) and the sparsity in
the scRNA-seq data (x-axis) of each gene.

• The third panel is similar to the second one, but contains the gene sparsity of the spatial data. Spatial data are
usually more sparse than single cell data, a discrepancy which is often responsible for low quality mapping.

• In the last panel, we show the training scores as a function of the difference in sparsity between the dataset. For
genes with comparable sparsity, the mapped gene expression is very similar to that in the spatial data. However,
if a gene is quite sparse in one dataset (typically, the spatial data) but not in other, the mapping score is lower.
This occurs as Tangram cannot properly matched the gene pattern because of inconsistent amount of dropouts
between the datasets.

Although the above plots give us a summary of scores at single-gene level, we would need to know which are the genes
are mapped with low scores. These information are stored in the dataframe .uns['train_genes_df']; this is the
dataframe used to build the four plots above.

[11]: ad_map.uns['train_genes_df']

[11]: train_score sparsity_sc sparsity_sp sparsity_diff
ppia 0.998200 0.000092 0.000000 -0.000092
ubb 0.997364 0.000092 0.000000 -0.000092
atp1b1 0.997066 0.014334 0.000000 -0.014334
tmsb4x 0.996971 0.002811 0.000000 -0.002811
ckb 0.996360 0.002765 0.000000 -0.002765
...
trpc5 0.194716 0.569203 0.981481 0.412278
cdyl2 0.189953 0.425911 0.981481 0.555570
cntnap5c 0.157349 0.608241 0.993827 0.385586
dlx1as 0.142076 0.587777 0.990741 0.402964
kcnh6 0.133051 0.379131 0.996914 0.617783

[1280 rows x 4 columns]

3.5. Tutorials 51

Tangram, Release 0.4.0

New spatial data via aligned single cells

If the mapping mode is 'cells', we can now generate the “new spatial data” using the mapped single cell: this is
done via project_genes. The function accepts as input a mapping (adata_map) and corresponding single cell data
(adata_sc). The result is a voxel-by-gene AnnData, formally similar to adata_st, but containing gene expression
from the mapped single cell data rather than Visium. For downstream analysis, we always replace adata_st with the
corresponding ad_ge.

[14]: ad_ge = tg.project_genes(adata_map=ad_map, adata_sc=adata_sc)
ad_ge

[14]: AnnData object with n_obs × n_vars = 324 × 36826
obs: 'in_tissue', 'array_row', 'array_col', 'n_genes_by_counts', 'log1p_n_genes_by_

→˓counts', 'total_counts', 'log1p_total_counts', 'pct_counts_in_top_50_genes', 'pct_
→˓counts_in_top_100_genes', 'pct_counts_in_top_200_genes', 'pct_counts_in_top_500_genes',
→˓ 'total_counts_MT', 'log1p_total_counts_MT', 'pct_counts_MT', 'n_counts', 'leiden',
→˓'cluster', 'uniform_density', 'rna_count_based_density'

var: 'mt', 'n_cells_by_counts', 'mean_counts', 'log1p_mean_counts', 'pct_dropout_by_
→˓counts', 'total_counts', 'log1p_total_counts', 'n_cells', 'highly_variable', 'highly_
→˓variable_rank', 'means', 'variances', 'variances_norm', 'sparsity', 'is_training'

uns: 'cell_class_colors', 'cell_subclass_colors', 'hvg', 'neighbors', 'pca', 'umap',
→˓'rank_genes_groups', 'training_genes', 'overlap_genes'

Let’s choose a few training genes mapped with low score, to try to understand why.

[15]: genes = ['rragb', 'trim17', 'eno1b']
ad_map.uns['train_genes_df'].loc[genes]

[15]: train_score sparsity_sc sparsity_sp sparsity_diff
rragb 0.358785 0.079919 0.867284 0.787365
trim17 0.201789 0.069641 0.959877 0.890236
eno1b 0.342446 0.022492 0.885802 0.863311

To visualize gene patterns, we use the helper plot_genes. This function accepts two voxel-by-gene AnnData: the
actual spatial data (adata_measured), and a Tangram spatial prediction (adata_predicted). The function returns
gene expression maps from the two spatial AnnData on the genes genes.

[16]: tg.plot_genes_sc(genes, adata_measured=adata_st, adata_predicted=ad_ge, perc=0.02)

52 Chapter 3. Release Notes

Tangram, Release 0.4.0

The above pictures explain the low training scores. Some genes are detected with very different levels of sparsity -
typically they are much more sparse in the scRNAseq than in the spatial data. This is due to the fact that technologies
like Visium are more prone to technical dropouts. Therefore, Tangram cannot find a good spatial alignment for these
genes as the baseline signal is missing. However, so long as most training genes are measured with high quality, we
can trust mapping and use Tangram prediction to correct gene expression. This is an imputation method which relies
on entirely different premises than those in probabilistic models.

Another application is found by inspecting genes that are not detected in the spatial data, but are detected in the single
cell data. They are removed before training with pp_adatas function, but Tangram can predict their expression.

[17]: genes=['loc102633833', 'gm5700', 'gm8292']
tg.plot_genes_sc(genes, adata_measured=adata_st, adata_predicted=ad_ge, perc=0.02)

3.5. Tutorials 53

Tangram, Release 0.4.0

• So far, we only inspected genes used to align the data (training genes), but the mapped single cell data, ad_ge
contains the whole transcriptome. That includes more than 35k test genes.

[18]: (ad_ge.var.is_training == False).sum()

[18]: 35546

We can use plot_genes to inspect gene expression of test genes as well. Inspecting the test transcriptome is an
essential to validate mapping. At the same time, we need to be careful that some prediction might disagree with spatial
data because of the technical droputs.

It is convenient to compute the similarity scores of all genes, which can be done by compare_spatial_geneexp.
This function accepts two spatial AnnDatas (ie voxel-by-gene), and returns a dataframe with simlarity scores for
all genes. Training genes are flagged by the boolean field is_training. If we also pass single cell AnnData to
compare_spatial_geneexp function like below, a dataframe with additional sparsity columns - sparsity_sc (sin-
gle cell data sparsity) and sparsity_diff (spatial data sparsity - single cell data sparsity) will return. This is required

54 Chapter 3. Release Notes

Tangram, Release 0.4.0

if we want to call plot_test_scores function later with the returned datafrme from compare_spatial_geneexp
function.

[19]: df_all_genes = tg.compare_spatial_geneexp(ad_ge, adata_st, adata_sc)
df_all_genes

[19]: score is_training sparsity_sp sparsity_sc sparsity_diff
snap25 0.998238 False 0.000000 0.014610 -0.014610
ppia 0.998200 True 0.000000 0.000092 -0.000092
gapdh 0.998200 False 0.000000 0.000968 -0.000968
calm1 0.997942 False 0.000000 0.000369 -0.000369
calm2 0.997779 False 0.000000 0.001751 -0.001751
...
6330420h09rik 0.000014 False 0.996914 0.998894 -0.001980
1810010k12rik 0.000014 False 0.996914 0.999585 -0.002672
cckar 0.000013 False 0.996914 0.999309 -0.002395
chil3 0.000013 False 0.996914 0.998894 -0.001980
cyp3a13 0.000013 False 0.996914 0.998479 -0.001565

[14785 rows x 5 columns]

The prediction on test genes can be graphically visualized using plot_auc:

[20]: # sns.scatterplot(data=df_all_genes, x='score', y='sparsity_sp', hue='is_training',␣
→˓alpha=.5); # for legacy
tg.plot_auc(df_all_genes);

<Figure size 432x288 with 0 Axes>

This above figure is the most important validation plot in *Tangram*. Each dot represents a gene; the x-axis
indicates the score, and the y-axis the sparsity of that gene in the spatial data. Unsurprisingly, the genes predicted with
low score represents very sparse genes in the spatial data, suggesting that the Tangram predictions correct expression
in those genes. Note that curve observed above is typical of Tangram mappings: the area under that curve is the most
reliable metric we use to evaluate mapping.

Let’s inspect a few predictions. Some of these genes are biologically sparse, but well predicted:

[21]: genes=['tfap2b', 'zic4']
tg.plot_genes_sc(genes, adata_measured=adata_st, adata_predicted=ad_ge, perc=0.02)

3.5. Tutorials 55

Tangram, Release 0.4.0

Some non-sparse genes present petterns, that Tangram accentuates:

[22]: genes = ['cd34', 'rasal1']
tg.plot_genes_sc(genes, adata_measured=adata_st, adata_predicted=ad_ge, perc=0.02)

56 Chapter 3. Release Notes

Tangram, Release 0.4.0

Finally, some unannotated genes have unknown function. These genes are often hardly detected in spatial data but
Tangram provides prediction:

[23]: genes = ['gm33027', 'gm5431']
tg.plot_genes_sc(genes[:5], adata_measured=adata_st, adata_predicted=ad_ge, perc=0.02)

3.5. Tutorials 57

Tangram, Release 0.4.0

For untargeted spatial technologies, like Visium and Slide-seq, a spatial voxel may contain more than one cells.
In these cases, it might be useful to disentangle gene expression into single cells - a process called deconvolu-
tion. Deconvolution is a requested feature, and also hard to obtain accurately with computational methods. If your
goal is to study co-localization of cell types, we recommend you work with the spatial cell type maps instead. If
your aim is discovery of cell-cell communication mechanisms, we suggest you compute gene programs, then use
project_cell_annotations to spatially visualize program usage. To proceed with deconvolution anyways, see
below.

In order to deconvolve cells, Tangram needs to know how many cells are present in each voxel. This is achieved by
segmenting the cells on the corresponding histology, which squidpy makes possible with two lines of code: - squidpy.
im.process applies smoothing as a pre-processing step. - squidpy.im.segment computes segmentation masks with
watershed algorithm.

Note that some technologies, like Slide-seq, currently do not allow staining the same slide of tissue on which genes
are profiled. For these data, you can still attempt a deconvolution by estimating cell density in a rough way - often
we just pass a uniform prior. Finally, note that deconvolutions are hard to validate, as we do not have ground truth
spatially-resolved single cells.

[24]: sq.im.process(img=img, layer="image", method="smooth")
sq.im.segment(

img=img,
layer="image_smooth",
method="watershed",
channel=0,

)

Let’s visualize the segmentation results for an inset

58 Chapter 3. Release Notes

Tangram, Release 0.4.0

[25]: inset_y = 1500
inset_x = 1700
inset_sy = 400
inset_sx = 500

fig, axs = plt.subplots(1, 3, figsize=(30, 10))
sc.pl.spatial(

adata_st, color="cluster", alpha=0.7, frameon=False, show=False, ax=axs[0], title=""
)
axs[0].set_title("Clusters", fontdict={"fontsize": 20})
sf = adata_st.uns["spatial"]["V1_Adult_Mouse_Brain_Coronal_Section_2"]["scalefactors"][

"tissue_hires_scalef"
]
rect = mpl.patches.Rectangle(

(inset_y * sf, inset_x * sf),
width=inset_sx * sf,
height=inset_sy * sf,
ec="yellow",
lw=4,
fill=False,

)
axs[0].add_patch(rect)

axs[0].axes.xaxis.label.set_visible(False)
axs[0].axes.yaxis.label.set_visible(False)

axs[1].imshow(
img["image"][inset_y : inset_y + inset_sy, inset_x : inset_x + inset_sx, 0, 0]
/ 65536,
interpolation="none",

)
axs[1].grid(False)
axs[1].set_xticks([])
axs[1].set_yticks([])
axs[1].set_title("DAPI", fontdict={"fontsize": 20})

crop = img["segmented_watershed"][
inset_y : inset_y + inset_sy, inset_x : inset_x + inset_sx

].values.squeeze(-1)
crop = skimage.segmentation.relabel_sequential(crop)[0]
cmap = plt.cm.plasma
cmap.set_under(color="black")
axs[2].imshow(crop, interpolation="none", cmap=cmap, vmin=0.001)
axs[2].grid(False)
axs[2].set_xticks([])
axs[2].set_yticks([])
axs[2].set_title("Nucleous segmentation", fontdict={"fontsize": 20});

3.5. Tutorials 59

Tangram, Release 0.4.0

Comparison between DAPI and mask confirms the quality of the segmentation. We then need to extract some image
features useful for the deconvolution task downstream. Specifically: - the number of unique segmentation objects (i.e.
nuclei) under each spot. - the coordinates of the centroids of the segmentation object.

[26]: # define image layer to use for segmentation
features_kwargs = {

"segmentation": {
"label_layer": "segmented_watershed",
"props": ["label", "centroid"],
"channels": [1, 2],

}
}
calculate segmentation features
sq.im.calculate_image_features(

adata_st,
img,
layer="image",
key_added="image_features",
features_kwargs=features_kwargs,
features="segmentation",
mask_circle=True,

)

100%|| 324/324 [01:19<00:00, 4.09/s]

We can visualize the total number of objects under each spot with scanpy.

[27]: adata_st.obs["cell_count"] = adata_st.obsm["image_features"]["segmentation_label"]
sc.pl.spatial(adata_st, color=["cluster", "cell_count"], frameon=False)

60 Chapter 3. Release Notes

Tangram, Release 0.4.0

Deconvolution via alignment

The rationale for deconvolving with Tangram, is to constrain the number of mapped single cell profiles. This is different
that most deconvolution method. Specifically, we set them equal to the number of segmented cells in the histology,
in the following way: - We pass mode='constrained'. This adds a filter term to the loss function, and a boolean
regularizer. - We set target_count equal to the total number of segmented cells. Tangram will look for the best
target_count cells to align in space. - We pass a density_prior, containing the fraction of cells per voxel.

[28]: ad_map = tg.map_cells_to_space(
adata_sc,
adata_st,
mode="constrained",
target_count=adata_st.obs.cell_count.sum(),
density_prior=np.array(adata_st.obs.cell_count) / adata_st.obs.cell_count.sum(),
num_epochs=1000,

device="cuda:0",
device='cpu',

)

Score: 0.613, KL reg: 0.125, Count reg: 5724.304, Lambda f reg: 4490.422
Score: 0.698, KL reg: 0.012, Count reg: 1.051, Lambda f reg: 734.217
Score: 0.700, KL reg: 0.012, Count reg: 1.661, Lambda f reg: 243.458
Score: 0.701, KL reg: 0.012, Count reg: 0.286, Lambda f reg: 172.023
Score: 0.701, KL reg: 0.012, Count reg: 0.325, Lambda f reg: 143.205
Score: 0.701, KL reg: 0.012, Count reg: 0.129, Lambda f reg: 123.143
Score: 0.701, KL reg: 0.012, Count reg: 0.029, Lambda f reg: 107.319
Score: 0.701, KL reg: 0.012, Count reg: 0.530, Lambda f reg: 96.239
Score: 0.701, KL reg: 0.012, Count reg: 0.375, Lambda f reg: 90.205
Score: 0.701, KL reg: 0.012, Count reg: 0.081, Lambda f reg: 83.204

In the same way as before, we can plot cell type maps:

[29]: tg.project_cell_annotations(ad_map, adata_st, annotation="cell_subclass")
annotation_list = list(pd.unique(adata_sc.obs['cell_subclass']))
tg.plot_cell_annotation_sc(adata_st, annotation_list, perc=0.02)

3.5. Tutorials 61

Tangram, Release 0.4.0

We validate mapping by inspecting the test transcriptome:

[30]: ad_ge = tg.project_genes(adata_map=ad_map, adata_sc=adata_sc)
df_all_genes = tg.compare_spatial_geneexp(ad_ge, adata_st, adata_sc)
tg.plot_auc(df_all_genes);

<Figure size 432x288 with 0 Axes>

62 Chapter 3. Release Notes

Tangram, Release 0.4.0

And here comes the key part, where we will use the results of the previous deconvolution steps. Previously, we computed
the absolute numbers of unique segmentation objects under each spot, together with their centroids. Let’s extract them
in the right format useful for Tangram. In the resulting dataframe, each row represents a single segmentation object (a
cell). We also have the image coordinates as well as the unique centroid ID, which is a string that contains both the
spot ID and a numerical index. Tangram provides a convenient function to export the mapping between spot ID and
segmentation ID to adata.uns.

[31]: tg.create_segment_cell_df(adata_st)
adata_st.uns["tangram_cell_segmentation"].head()

[31]: spot_idx y x centroids
0 AAATGGCATGTCTTGT-1 5304.000000 731.000000 AAATGGCATGTCTTGT-1_0
1 AAATGGCATGTCTTGT-1 5320.947519 721.331554 AAATGGCATGTCTTGT-1_1
2 AAATGGCATGTCTTGT-1 5332.942342 717.447904 AAATGGCATGTCTTGT-1_2
3 AAATGGCATGTCTTGT-1 5348.865384 558.924248 AAATGGCATGTCTTGT-1_3
4 AAATGGCATGTCTTGT-1 5342.124989 567.208502 AAATGGCATGTCTTGT-1_4

We can use tangram.count_cell_annotation() to map cell types as result of the deconvolution step to putative
segmentation ID.

[32]: tg.count_cell_annotations(
ad_map,
adata_sc,
adata_st,
annotation="cell_subclass",

)
adata_st.obsm["tangram_ct_count"].head()

[32]: x y cell_n \
AAATGGCATGTCTTGT-1 641 5393 13
AACAACTGGTAGTTGC-1 4208 1672 16
AACAGGAAATCGAATA-1 1117 5117 28
AACCCAGAGACGGAGA-1 1101 1274 5
AACCGTTGTGTTTGCT-1 399 4708 7

centroids Pvalb \
AAATGGCATGTCTTGT-1 [AAATGGCATGTCTTGT-1_0, AAATGGCATGTCTTGT-1_1, A... 1
AACAACTGGTAGTTGC-1 [AACAACTGGTAGTTGC-1_0, AACAACTGGTAGTTGC-1_1, A... 1
AACAGGAAATCGAATA-1 [AACAGGAAATCGAATA-1_0, AACAGGAAATCGAATA-1_1, A... 1

(continues on next page)

3.5. Tutorials 63

Tangram, Release 0.4.0

(continued from previous page)

AACCCAGAGACGGAGA-1 [AACCCAGAGACGGAGA-1_0, AACCCAGAGACGGAGA-1_1, A... 2
AACCGTTGTGTTTGCT-1 [AACCGTTGTGTTTGCT-1_0, AACCGTTGTGTTTGCT-1_1, A... 2

L4 Vip L2/3 IT Lamp5 NP ... L5 PT Astro L6b Endo \
AAATGGCATGTCTTGT-1 0 1 0 0 0 ... 2 0 0 0
AACAACTGGTAGTTGC-1 0 4 0 2 1 ... 1 0 0 0
AACAGGAAATCGAATA-1 1 3 0 2 0 ... 0 0 1 0
AACCCAGAGACGGAGA-1 0 0 0 0 0 ... 0 1 0 0
AACCGTTGTGTTTGCT-1 1 0 0 0 0 ... 1 0 0 2

Peri Meis2 Macrophage CR VLMC SMC
AAATGGCATGTCTTGT-1 0 0 0 0 0 0
AACAACTGGTAGTTGC-1 0 0 0 0 0 0
AACAGGAAATCGAATA-1 1 1 0 0 0 0
AACCCAGAGACGGAGA-1 0 0 1 0 0 0
AACCGTTGTGTTTGCT-1 0 0 0 0 0 1

[5 rows x 27 columns]

And finally export the results in a new AnnData object.

[33]: adata_segment = tg.deconvolve_cell_annotations(adata_st)
adata_segment.obs.head()

[33]: y x centroids cluster
0 5304.000000 731.000000 AAATGGCATGTCTTGT-1_0 Pvalb
1 5320.947519 721.331554 AAATGGCATGTCTTGT-1_1 Vip
2 5332.942342 717.447904 AAATGGCATGTCTTGT-1_2 Sst
3 5348.865384 558.924248 AAATGGCATGTCTTGT-1_3 L5 IT
4 5342.124989 567.208502 AAATGGCATGTCTTGT-1_4 L6 CT

Note that the AnnData object does not contain counts, but only cell type annotations, as results of the Tangram mapping.
Nevertheless, it’s convenient to create such AnnData object for visualization purposes. Below you can appreciate how
each dot is now not a Visium spot anymore, but a single unique segmentation object, with the mapped cell type.

[34]: fig, ax = plt.subplots(1, 1, figsize=(20, 20))
sc.pl.spatial(

adata_segment,
color="cluster",
size=0.4,
show=False,
frameon=False,
alpha_img=0.2,
legend_fontsize=20,
ax=ax,

)

[34]: [<AxesSubplot:title={'center':'cluster'}, xlabel='spatial1', ylabel='spatial2'>]

64 Chapter 3. Release Notes

Tangram, Release 0.4.0

3.5. Tutorials 65

Tangram, Release 0.4.0

66 Chapter 3. Release Notes

PYTHON MODULE INDEX

t
tangram.mapping_optimizer, 9
tangram.mapping_utils, 10
tangram.plot_utils, 12
tangram.utils, 17

67

Tangram, Release 0.4.0

68 Python Module Index

INDEX

A
adata_to_cluster_expression() (in module tan-

gram.mapping_utils), 11
annotate_gene_sparsity() (in module tan-

gram.utils), 18

C
compare_spatial_geneexp() (in module tan-

gram.utils), 18
construct_obs_plot() (in module tan-

gram.plot_utils), 13
convert_adata_array() (in module tan-

gram.plot_utils), 13
count_cell_annotations() (in module tan-

gram.utils), 19
create_segment_cell_df() (in module tan-

gram.utils), 19
cross_val() (in module tangram.utils), 20
cv_data_gen() (in module tangram.utils), 21

D
deconvolve_cell_annotations() (in module tan-

gram.utils), 21
df_to_cell_types() (in module tangram.utils), 21

E
eval_metric() (in module tangram.utils), 22

G
get_matched_genes() (in module tangram.utils), 22

M
map_cells_to_space() (in module tan-

gram.mapping_utils), 11
Mapper (class in tangram.mapping_optimizer), 9
MapperConstrained (class in tan-

gram.mapping_optimizer), 10
module

tangram.mapping_optimizer, 9
tangram.mapping_utils, 10
tangram.plot_utils, 12

tangram.utils, 17

O
one_hot_encoding() (in module tangram.utils), 22
ordered_predictions() (in module tan-

gram.plot_utils), 13

P
plot_annotation_entropy() (in module tan-

gram.plot_utils), 14
plot_auc() (in module tangram.plot_utils), 14
plot_cell_annotation() (in module tan-

gram.plot_utils), 14
plot_cell_annotation_sc() (in module tan-

gram.plot_utils), 15
plot_gene_sparsity() (in module tan-

gram.plot_utils), 15
plot_genes() (in module tangram.plot_utils), 15
plot_genes_sc() (in module tangram.plot_utils), 16
plot_test_scores() (in module tangram.plot_utils),

16
plot_training_scores() (in module tan-

gram.plot_utils), 16
pp_adatas() (in module tangram.mapping_utils), 12
project_cell_annotations() (in module tan-

gram.utils), 23
project_genes() (in module tangram.utils), 23

Q
q_value() (in module tangram.plot_utils), 17
quick_plot_gene() (in module tangram.plot_utils), 17

R
read_pickle() (in module tangram.utils), 23

T
tangram.mapping_optimizer

module, 9
tangram.mapping_utils

module, 10
tangram.plot_utils

69

Tangram, Release 0.4.0

module, 12
tangram.utils

module, 17
train() (tangram.mapping_optimizer.Mapper method),

9
train() (tangram.mapping_optimizer.MapperConstrained

method), 10
transfer_annotations_prob() (in module tan-

gram.utils), 24
transfer_annotations_prob_filter() (in module

tangram.utils), 24

70 Index

	Tangram News
	Citing Tangram
	Release Notes
	Getting Started
	Installing Tangram
	Running Tangram
	Cell Level
	Cluster Level

	Tangram Under the Hood
	Classes
	tangram.mapping_optimizer
	tangram.mapping_optimizer.Mapper
	tangram.mapping_optimizer.Mapper.train

	tangram.mapping_optimizer.MapperConstrained
	tangram.mapping_optimizer.MapperConstrained.train

	tangram.mapping_utils
	tangram.mapping_utils.adata_to_cluster_expression
	tangram.mapping_utils.map_cells_to_space
	tangram.mapping_utils.pp_adatas

	tangram.plot_utils
	tangram.plot_utils.construct_obs_plot
	tangram.plot_utils.convert_adata_array
	tangram.plot_utils.ordered_predictions
	tangram.plot_utils.plot_annotation_entropy
	tangram.plot_utils.plot_auc
	tangram.plot_utils.plot_cell_annotation
	tangram.plot_utils.plot_cell_annotation_sc
	tangram.plot_utils.plot_gene_sparsity
	tangram.plot_utils.plot_genes
	tangram.plot_utils.plot_genes_sc
	tangram.plot_utils.plot_test_scores
	tangram.plot_utils.plot_training_scores
	tangram.plot_utils.q_value
	tangram.plot_utils.quick_plot_gene

	tangram.utils
	tangram.utils.annotate_gene_sparsity
	tangram.utils.compare_spatial_geneexp
	tangram.utils.count_cell_annotations
	tangram.utils.create_segment_cell_df
	tangram.utils.cross_val
	tangram.utils.cv_data_gen
	tangram.utils.deconvolve_cell_annotations
	tangram.utils.df_to_cell_types
	tangram.utils.eval_metric
	tangram.utils.get_matched_genes
	tangram.utils.one_hot_encoding
	tangram.utils.project_cell_annotations
	tangram.utils.project_genes
	tangram.utils.read_pickle
	tangram.utils.transfer_annotations_prob
	tangram.utils.transfer_annotations_prob_filter

	Frequently Asked Questions
	Tutorials
	Tutorial for mapping data with Tangram
	Last changelog
	Installation
	Download the data
	Load spatial data
	Single cell data
	Prepare to map
	Map
	Analysis
	Leave-One-Out Cross Validation (LOOCV)

	Tutorial for spatial mapping using Tangram
	What is Tangram?
	What do I use Tangram for?
	Frequently Asked Questions about Tangram
	How is Tangram different, than all the other deconvolution/mapping method?
	My scRNAseq/spatial data come from different samples. Can I still use Tangram?
	Does Tangram only work on mouse brain data?
	Why doesn’t Tangram have hypotheses on the underlying model?
	Where do I learn more about Tangram?
	Setting up

	Loading datasets
	Pre-processing
	Find alignment
	Cell type maps
	New spatial data via aligned single cells
	Deconvolution via alignment

	Python Module Index
	Index

