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TANGRAM

Tangram is a Python package, written in PyTorch [https://pytorch.org/] and based on scanpy [https://scanpy.readthedocs.io/en/stable/] , for mapping single-cell (or single-nucleus) gene expression data onto spatial gene expression data. The single-cell dataset and the spatial dataset should be collected from the same anatomical region/tissue type, ideally from a biological replicate, and need to share a set of genes. Tangram aligns the single-cell data in space by fitting gene expression on the shared genes. The best way to familiarize yourself with Tangram is to check out our tutorials.

[image: _images/tangram_overview.png]



Tangram News


	On Jan 28th 2021, Sten Linnarsson gave a talk [https://www.youtube.com/watch?v=0mxIe2AsSKs] at the WWNDev Forum and demostrated their mappings of the developmental mouse brain using Tangram.


	On Mar 9th 2021, Nicholas Eagles wrote a blog post [http://research.libd.org/rstatsclub/2021/03/09/lessons-learned-applying-tangram-on-visium-data/#.YPsZphNKhb-] about applying Tangram on Visium data.







Citing Tangram

Tangram has been released in the following publication

Biancalani* T., Scalia* G. et al. - _Deep learning and alignment of spatially-resolved whole transcriptomes of single cells in the mouse brain with Tangram biorXiv 10.1101/2020.08.29.272831 [https://www.biorxiv.org/content/10.1101/2020.08.29.272831v3] (2020)




Release Notes

1.0.0 2021-08-06 - Initial Release








            

          

      

      

    

  

    
      
          
            
  


Getting Started


Installing Tangram

To install Tangram, make sure you have PyTorch [https://pytorch.org/] and scanpy [https://scanpy.readthedocs.io/en/stable/] installed. If you need more details on the dependences, look at the environment.yml [https://github.com/broadinstitute/Tangram/blob/master/environment.yml] file.

Install Tangram from shell:

pip install tangram-sc








Running Tangram


Cell Level

To install Tangram, make sure you have PyTorch [https://pytorch.org/] and scanpy [https://scanpy.readthedocs.io/en/stable/] installed. If you need more details on the dependences, look at the environment.yml [https://github.com/broadinstitute/Tangram/blob/master/environment.yml] file.

Install tangram-sc from shell:

pip install tangram-sc





Import tangram:

import tangram as tg





Then load your spatial data and your single cell data (which should be in AnnData [https://anndata.readthedocs.io/en/latest/anndata.AnnData.html] format), and pre-process them using tg.pp_adatas:

ad_sp = sc.read_h5ad(path)
ad_sc = sc.read_h5ad(path)
tg.pp_adatas(ad_sc, ad_sp, genes=None)





The function pp_adatas finds the common genes between adata_sc, adata_sp, and saves them in two adatas.uns for mapping and analysis later. Also, it subsets the intersected genes to a set of training genes passed by genes. If genes=None, Tangram maps using all genes shared by the two datasets. Once the datasets are pre-processed we can map:

ad_map = tg.map_cells_to_space(ad_sc, ad_sp)





The returned AnnData, ad_map , is a cell-by-voxel structure where ad_map.X[i, j] gives the probability for cell i to be in voxel j. This structure can be used to project gene expression from the single cell data to space, which is achieved via tg.project_genes:

ad_ge = tg.project_genes(ad_map, ad_sc)





The returned ad_ge is a voxel-by-gene AnnData, similar to spatial data ad_sp, but where gene expression has been projected from the single cells. This allows to extend gene throughput, or correct for dropouts, if the single cells have higher quality (or more genes) than single cell data. It can also be used to transfer cell types onto space.

For more details on how to use Tangram check out our tutorial [https://github.com/broadinstitute/Tangram/blob/master/tangram_tutorial.ipynb].
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Tangram Under the Hood

Tangram instantiates a Mapper object passing the following arguments:
* _S_: single cell matrix with shape cell-by-gene. Note that genes is the number of training genes.
* _G_: spatial data matrix with shape voxels-by-genes. Voxel can contain multiple cells.

Then, Tangram searches for a mapping matrix M, with shape voxels-by-cells, where the element M_ij signifies the probability of cell i of being in spot j. Tangram computes the matrix M by minimizing the following loss:

[image: _images/tangram_loss.gif]
where cos_sim is the cosine similarity. The meaning of the loss function is that gene expression of the mapped single cells should be as similar as possible to the spatial data G, under the cosine similarity sense.

The above accounts for basic Tangram usage. In our manuscript, we modified the loss function in several ways so as to add various kinds of prior knowledge, such as number of cell contained in each voxels.
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Classes







	tangram.mapping_optimizer

	Library for instantiating and running the optimizer for Tangram.



	tangram.mapping_utils

	Mapping helpers



	tangram.plot_utils

	This module includes plotting utility functions.



	tangram.utils

	Utility functions to pre- and post-process data for Tangram.
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tangram.mapping_optimizer

Description

Library for instantiating and running the optimizer for Tangram. The optimizer comes in two flavors,
which correspond to two different classes:
- Mapper: optimizer without filtering (i.e., all single cells are mapped onto space). At the end, the learned mapping
matrix M is returned.
- MapperConstrained: optimizer with filtering (i.e., only a subset of single cells are mapped onto space).
At the end, the learned mapping matrix M and the learned filter F are returned.

Classes







	Mapper(S, G[, d, d_source, lambda_g1, …])

	Allows instantiating and running the optimizer for Tangram, without filtering.



	MapperConstrained(S, G, d[, lambda_d, …])

	Allows instantiating and running the optimizer for Tangram, with filtering.
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tangram.mapping_optimizer.Mapper


	
class tangram.mapping_optimizer.Mapper(S, G, d=None, d_source=None, lambda_g1=1.0, lambda_d=0, lambda_g2=0, lambda_r=0, device='cpu', adata_map=None, random_state=None)

	Allows instantiating and running the optimizer for Tangram, without filtering.
Once instantiated, the optimizer is run with the ‘train’ method, which also returns the mapping result.







	Mapper.train(num_epochs[, learning_rate, …])

	Run the optimizer and returns the mapping outcome.
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tangram.mapping_optimizer.Mapper.train


	
Mapper.train(num_epochs, learning_rate=0.1, print_each=100)

	Run the optimizer and returns the mapping outcome.


	Parameters

	
	num_epochs (int) – Number of epochs.


	learning_rate (float) – Optional. Learning rate for the optimizer. Default is 0.1.


	print_each (int) – Optional. Prints the loss each print_each epochs. If None, the loss is never printed. Default is 100.






	Returns

	The optimized mapping matrix M (ndarray), with shape (number_cells, number_spots).
training_history (dict): loss for each epoch



	Return type

	output (ndarray)
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tangram.mapping_optimizer.MapperConstrained


	
class tangram.mapping_optimizer.MapperConstrained(S, G, d, lambda_d=1, lambda_g1=1, lambda_g2=1, lambda_r=0, lambda_count=1, lambda_f_reg=1, target_count=None, device='cpu', adata_map=None, random_state=None)

	Allows instantiating and running the optimizer for Tangram, with filtering.
Once instantiated, the optimizer is run with the ‘train’ method, which also returns the mapping and filter results.







	MapperConstrained.train(num_epochs[, …])

	Run the optimizer and returns the mapping outcome.
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tangram.mapping_optimizer.MapperConstrained.train


	
MapperConstrained.train(num_epochs, learning_rate=0.1, print_each=100)

	Run the optimizer and returns the mapping outcome.


	Parameters

	
	num_epochs (int) – Number of epochs.


	learning_rate (float) – Optional. Learning rate for the optimizer. Default is 0.1.


	print_each (int) – Optional. Prints the loss each print_each epochs. If None, the loss is never printed. Default is 100.






	Returns

	M (ndarray): is the optimized mapping matrix, shape = (number_cells, number_spots).
f (ndarray): is the optimized filter, shape = (number_cells,).
training_history (dict): loss for each epoch



	Return type

	A tuple (output, F_out, training_history), with
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tangram.mapping_utils

Description

Mapping helpers

Functions







	adata_to_cluster_expression(adata, cluster_label)

	Convert an AnnData to a new AnnData with cluster expressions.



	map_cells_to_space(adata_sc, adata_sp[, …])

	Map single cell data (adata_sc) on spatial data (adata_sp).



	pp_adatas(adata_sc, adata_sp[, genes])

	Pre-process AnnDatas so that they can be mapped.
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tangram.mapping_utils.adata_to_cluster_expression


	
tangram.mapping_utils.adata_to_cluster_expression(adata, cluster_label, scale=True, add_density=True)

	Convert an AnnData to a new AnnData with cluster expressions. Clusters are based on cluster_label in adata.obs.  The returned AnnData has an observation for each cluster, with the cluster-level expression equals to the average expression for that cluster.
All annotations in adata.obs except cluster_label are discarded in the returned AnnData.


	Parameters

	
	adata (AnnData) – single cell data


	cluster_label (String) – field in adata.obs used for aggregating values


	scale (bool) – Optional. Whether weight input single cell by # of cells in cluster. Default is True.


	add_density (bool) – Optional. If True, the normalized number of cells in each cluster is added to the returned AnnData as obs.cluster_density. Default is True.






	Returns

	aggregated single cell data



	Return type

	AnnData
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tangram.mapping_utils.map_cells_to_space


	
tangram.mapping_utils.map_cells_to_space(adata_sc, adata_sp, cv_train_genes=None, cluster_label=None, mode='cells', device='cpu', learning_rate=0.1, num_epochs=1000, scale=True, lambda_d=0, lambda_g1=1, lambda_g2=0, lambda_r=0, lambda_count=1, lambda_f_reg=1, target_count=None, random_state=None, verbose=True, density_prior='rna_count_based')

	Map single cell data (adata_sc) on spatial data (adata_sp).


	Parameters

	
	adata_sc (AnnData) – single cell data


	adata_sp (AnnData) – gene spatial data


	cv_train_genes (list) – Optional. Training gene list. Default is None.


	cluster_label (str) – Optional. Field in adata_sc.obs used for aggregating single cell data. Only valid for mode=clusters.


	mode (str) – Optional. Tangram mapping mode. Currently supported: ‘cell’, ‘clusters’, ‘constrained’. Default is ‘cell’.


	device (string or torch.device) – Optional. Default is ‘cpu’.


	learning_rate (float) – Optional. Learning rate for the optimizer. Default is 0.1.


	num_epochs (int) – Optional. Number of epochs. Default is 1000.


	scale (bool) – Optional. Whether weight input single cell data by the number of cells in each cluster, only valid when cluster_label is not None. Default is True.


	lambda_d (float) – Optional. Hyperparameter for the density term of the optimizer. Default is 0.


	lambda_g1 (float) – Optional. Hyperparameter for the gene-voxel similarity term of the optimizer. Default is 1.


	lambda_g2 (float) – Optional. Hyperparameter for the voxel-gene similarity term of the optimizer. Default is 0.


	lambda_r (float) – Optional. Strength of entropy regularizer. An higher entropy promotes probabilities of each cell peaked over a narrow portion of space. lambda_r = 0 corresponds to no entropy regularizer. Default is 0.


	lambda_count (float) – Optional. Regularizer for the count term. Default is 1. Only valid when mode == ‘constrained’


	lambda_f_reg (float) – Optional. Regularizer for the filter, which promotes Boolean values (0s and 1s) in the filter. Only valid when mode == ‘constrained’. Default is 1.


	target_count (int) – Optional. The number of cells to be filtered. Default is None.


	random_state (int) – Optional. pass an int to reproduce training. Default is None.


	verbose (bool) – Optional. If print training details. Default is True.


	density_prior (str, ndarray or None) – Spatial density of spots, when is a string, value can be ‘rna_count_based’ or ‘uniform’, when is a ndarray, shape = (number_spots,). This array should satisfy the constraints sum() == 1. If None, the density term is ignored. Default value is ‘rna_count_based’.






	Returns

	a cell-by-spot AnnData containing the probability of mapping cell i on spot j.
The uns field of the returned AnnData contains the training genes.
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tangram.mapping_utils.pp_adatas


	
tangram.mapping_utils.pp_adatas(adata_sc, adata_sp, genes=None)

	Pre-process AnnDatas so that they can be mapped. Specifically:
- Remove genes that all entries are zero
- Find the intersection between adata_sc, adata_sp and given marker gene list, save the intersected markers in two adatas
- Calculate density priors and save it with adata_sp


	Parameters

	
	adata_sc (AnnData) – single cell data


	adata_sp (AnnData) – spatial expression data


	genes (List) – Optional. List of genes to use. If None, all genes are used.






	Returns

	update adata_sc by creating uns training_genes overlap_genes fields
update adata_sp by creating uns training_genes overlap_genes fields and creating obs rna_count_based_density & uniform_density field
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tangram.plot_utils

Description

This module includes plotting utility functions.

Functions







	construct_obs_plot(df_plot, adata[, perc, …])

	



	convert_adata_array(adata)

	



	ordered_predictions(xs, ys, preds[, reverse])

	Utility function that orders 2d points based on values associated to each point.



	plot_annotation_entropy(adata_map[, annotation])

	Utility function to plot entropy box plot by each annotation.



	plot_auc(df_all_genes[, test_genes])

	Plots auc curve which is used to evaluate model performance.



	plot_cell_annotation(adata_map, adata_sp[, …])

	Transfer an annotation for a single cell dataset onto space, and visualize corresponding spatial probability maps.



	plot_cell_annotation_sc(adata_sp, …[, perc])

	



	plot_gene_sparsity(adata_1, adata_2[, …])

	Compare sparsity of all genes between adata_1 and adata_2.



	plot_genes(genes, adata_measured, …[, x, …])

	Utility function to plot and compare original and projected gene spatial pattern ordered by intensity of the gene signal.



	plot_genes_sc(genes, adata_measured, …[, …])

	



	plot_test_scores(df_gene_score[, bins, alpha])

	Plots gene level test scores with each gene’s sparsity for mapping result.



	plot_training_scores(adata_map[, bins, alpha])

	Plots the 4-panel training diagnosis plot



	q_value(data, perc)

	Computes min and max values according to percentile for colormap in plot functions



	quick_plot_gene(gene, adata[, x, y, s, log, …])

	Utility function to quickly plot a gene in a AnnData structure ordered by intensity of the gene signal.
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tangram.plot_utils.construct_obs_plot


	
tangram.plot_utils.construct_obs_plot(df_plot, adata, perc=0, suffix=None)
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tangram.plot_utils.convert_adata_array


	
tangram.plot_utils.convert_adata_array(adata)
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tangram.plot_utils.ordered_predictions


	
tangram.plot_utils.ordered_predictions(xs, ys, preds, reverse=False)

	Utility function that orders 2d points based on values associated to each point.


	Parameters

	
	xs (Pandas series) – Sequence of x coordinates (floats).


	ys (Pandas series) – Sequence of y coordinates (floats).


	preds (Pandas series) – Sequence of spatial prediction.


	reverse (bool) – Optional. False will sort ascending, True will sort descending. Default is False.






	Returns

	Returns the ordered xs, ys, preds.
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tangram.plot_utils.plot_annotation_entropy


	
tangram.plot_utils.plot_annotation_entropy(adata_map, annotation='cell_type')

	Utility function to plot entropy box plot by each annotation.


	Parameters

	
	adata_map (AnnData) – cell-by-voxel tangram mapping result.


	annotation (str) – Optional. Must be a column in adata_map.obs. Default is ‘cell_type’.






	Returns

	None
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tangram.plot_utils.plot_auc


	
tangram.plot_utils.plot_auc(df_all_genes, test_genes=None)

	
Plots auc curve which is used to evaluate model performance.





	Parameters

	
	df_all_genes (Pandas dataframe) – returned by compare_spatial_geneexp(adata_ge, adata_sp);


	test_genes (list) – list of test genes, if not given, test_genes will be set to genes where ‘is_training’ field is False






	Returns

	None
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tangram.plot_utils.plot_cell_annotation


	
tangram.plot_utils.plot_cell_annotation(adata_map, adata_sp, annotation='cell_type', x='x', y='y', nrows=1, ncols=1, s=5, cmap='viridis', subtitle_add=False, robust=False, perc=0, invert_y=True)

	Transfer an annotation for a single cell dataset onto space, and visualize
corresponding spatial probability maps.


	Parameters

	
	adata_map (AnnData) – cell-by-spot AnnData containing mapping result


	adata_sp (AnnData) – spot-by-gene spatial AnnData


	annotation (str) – Optional. Must be a column in adata_map.obs. Default is ‘cell_type’.


	x (str) – Optional. Column name for spots x-coordinates (must be in adata_map.var). Default is ‘x’.


	y (str) – Optional. Column name for spots y-coordinates (must be in adata_map.var). Default is ‘y’.


	nrows (int) – Optional. Number of rows of the subplot grid. Default is 1.


	ncols (int) – Optional. Number of columns of the subplot grid. Default is 1.


	s (float) – Optional. Marker size. Default is 5.


	cmap (str) – Optional. Name of colormap. Default is ‘viridis’.


	subtitle_add (bool) – Optional. If add annotation name as the subtitle. Default is False.


	robust (bool) – Optional. If True, the colormap range is computed with given percentiles instead of extreme values.


	perc (float) – Optional. percentile used to calculate colormap range, only used when robust is True. Default is zero.


	invert_y (bool) – Optional. If invert the y axis for the plot. Default is True.






	Returns

	None
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tangram.plot_utils.plot_cell_annotation_sc


	
tangram.plot_utils.plot_cell_annotation_sc(adata_sp, annotation_list, perc=0)
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tangram.plot_utils.plot_gene_sparsity


	
tangram.plot_utils.plot_gene_sparsity(adata_1, adata_2, xlabel='adata_1', ylabel='adata_2', genes=None, s=1)

	Compare sparsity of all genes between adata_1 and adata_2.


	Parameters

	
	adata_1 (AnnData) – Input data


	adata_2 (AnnData) – Input data


	xlabel (str) – Optional. For setting the xlabel in the plot. Default is ‘adata_1’.


	ylabel (str) – Optional. For setting the ylabel in the plot. Default is ‘adata_2’.


	genes (list) – Optional. List of genes to use. If None, all genes are used.


	s (float) – Optional. Controls the size of marker. Default is 1.






	Returns

	None
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tangram.plot_utils.plot_genes


	
tangram.plot_utils.plot_genes(genes, adata_measured, adata_predicted, x='x', y='y', s=5, log=False, cmap='inferno', robust=False, perc=0, invert_y=True)

	Utility function to plot and compare original and projected gene spatial pattern ordered by intensity of the gene signal.


	Parameters

	
	genes (list) – list of gene names (str).


	adata_measured (AnnData) – ground truth gene spatial AnnData


	adata_predicted (AnnData) – projected gene spatial AnnData, can also be adata_ge_cv AnnData returned by cross_validation under ‘loo’ mode


	x (str) – Optional. Column name for spots x-coordinates (must be in adata_measured.var and adata_predicted.var). Default is ‘x’.


	y (str) – Optional. Column name for spots y-coordinates (must be in adata_measured.var and adata_predicted.var). Default is ‘y’.


	s (float) – Optional. Marker size. Default is 5.


	log – Optional. Whether to apply the log before plotting. Default is False.


	cmap (str) – Optional. Name of colormap. Default is ‘inferno’.


	robust (bool) – Optional. If True, the colormap range is computed with given percentiles instead of extreme values.


	perc (float) – Optional. percentile used to calculate colormap range, only used when robust is True. Default is zero.


	invert_y (bool) – Optional. If invert the y axis for the plot. Default is True.






	Returns

	None
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tangram.plot_utils.plot_genes_sc


	
tangram.plot_utils.plot_genes_sc(genes, adata_measured, adata_predicted, cmap='inferno', perc=0)
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tangram.plot_utils.plot_test_scores


	
tangram.plot_utils.plot_test_scores(df_gene_score, bins=10, alpha=0.7)

	Plots gene level test scores with each gene’s sparsity for mapping result.


	Parameters

	
	df_gene_score (Pandas dataframe) – returned by compare_spatial_geneexp(adata_ge, adata_sp, adata_sc);
with “gene names” as the index and “score”, “sparsity_sc”, “sparsity_sp”, “sparsity_diff” as the columns


	bins (int or string) – Optional. Default is 10.


	alpha (float) – Optional. Ranges from 0-1, and controls the opacity. Default is 0.7.






	Returns

	None
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tangram.plot_utils.plot_training_scores


	
tangram.plot_utils.plot_training_scores(adata_map, bins=10, alpha=0.7)

	Plots the 4-panel training diagnosis plot


	Parameters

	
	adata_map (AnnData) – 


	bins (int or string) – Optional. Default is 10.


	alpha (float) – Optional. Ranges from 0-1, and controls the opacity. Default is 0.7.






	Returns

	None
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tangram.plot_utils.q_value


	
tangram.plot_utils.q_value(data, perc)

	Computes min and max values according to percentile for colormap in plot functions


	Parameters

	
	data (numpy array) – input


	perc (float) – percentile that between 0 and 100 inclusive






	Returns

	will be later used to define the data range covers by the colormap



	Return type

	tuple of floats













            

          

      

      

    

  

  
    
    
    tangram.plot_utils.quick_plot_gene
    

    

    

    
 
  

    
      
          
            
  


tangram.plot_utils.quick_plot_gene


	
tangram.plot_utils.quick_plot_gene(gene, adata, x='x', y='y', s=50, log=False, cmap='viridis', robust=False, perc=0)

	Utility function to quickly plot a gene in a AnnData structure ordered by intensity of the gene signal.


	Parameters

	
	gene (str) – Gene name.


	adata (AnnData) – spot-by-gene spatial data.


	x (str) – Optional. Column name for spots x-coordinates (must be in adata.var). Default is ‘x’.


	y (str) – Optional. Column name for spots y-coordinates (must be in adata.var). Default is ‘y’.


	s (float) – Optional. Marker size. Default is 5.


	log – Optional. Whether to apply the log before plotting. Default is False.


	cmap (str) – Optional. Name of colormap. Default is ‘viridis’.


	robust (bool) – Optional. If True, the colormap range is computed with given percentiles instead of extreme values.


	perc (float) – Optional. percentile used to calculate colormap range, only used when robust is True. Default is zero.






	Returns

	None
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tangram.utils

Description

Utility functions to pre- and post-process data for Tangram.

Functions







	annotate_gene_sparsity(adata)

	Annotates gene sparsity in given Anndatas.



	compare_spatial_geneexp(adata_ge, adata_sp)

	Compares generated spatial data with the true spatial data



	count_cell_annotations(adata_map, adata_sc, …)

	Count cells in a voxel for each annotation.



	create_segment_cell_df(adata_sp)

	Produces a Pandas dataframe where each row is a segmentation object, columns reveals its position information.



	cross_val(adata_sc, adata_sp[, …])

	Executes cross validation



	cv_data_gen(adata_sc, adata_sp[, cv_mode])

	Generates pair of training/test gene indexes cross validation datasets



	deconvolve_cell_annotations(adata_sp[, …])

	Assigns cell annotation to each segmented cell.



	df_to_cell_types(df, cell_types)

	Utility function that “randomly” assigns cell coordinates in a voxel to known numbers of cell types in that voxel.



	eval_metric(df_all_genes[, test_genes])

	Compute metrics on given test_genes set for evaluation



	get_matched_genes(prior_genes_names, …[, …])

	Given the list of genes in the spatial data and the list of genes in the single nuclei, identifies the subset of genes included in both lists and returns the corresponding matching indices.



	one_hot_encoding(l[, keep_aggregate])

	Given a sequence, returns a DataFrame with a column for each unique value in the sequence and a one-hot-encoding.



	project_cell_annotations(adata_map, adata_sp)

	Transfer annotation from single cell data onto space.



	project_genes(adata_map, adata_sc[, …])

	Transfer gene expression from the single cell onto space.



	read_pickle(filename)

	Helper to read pickle file which may be zipped or not.



	transfer_annotations_prob(mapping_matrix, …)

	Transfer cell annotations onto space through a mapping matrix.



	transfer_annotations_prob_filter(…)

	Transfer cell annotations onto space through a mapping matrix and a filter.
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tangram.utils.annotate_gene_sparsity


	
tangram.utils.annotate_gene_sparsity(adata)

	Annotates gene sparsity in given Anndatas.
Update given Anndata by creating var “sparsity” field with gene_sparsity (1 - % non-zero observations).


	Parameters

	adata (Anndata) – single cell or spatial data.



	Returns

	None
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tangram.utils.compare_spatial_geneexp


	
tangram.utils.compare_spatial_geneexp(adata_ge, adata_sp, adata_sc=None, genes=None)

	Compares generated spatial data with the true spatial data


	Parameters

	
	adata_ge (AnnData) – generated spatial data returned by project_genes


	adata_sp (AnnData) – gene spatial data


	adata_sc (AnnData) – Optional. When passed, sparsity difference between adata_sc and adata_sp will be calculated. Default is None.


	genes (list) – Optional. When passed, returned output will be subset on the list of genes. Default is None.






	Returns

	
	a dataframe with columns: ‘score’, ‘is_training’, ‘sparsity_sp’(spatial data sparsity).
	Columns - ‘sparsity_sc’(single cell data sparsity), ‘sparsity_diff’(spatial sparsity - single cell sparsity) returned only when adata_sc is passed.









	Return type

	Pandas Dataframe
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tangram.utils.count_cell_annotations


	
tangram.utils.count_cell_annotations(adata_map, adata_sc, adata_sp, annotation='cell_type', threshold=0.5)

	Count cells in a voxel for each annotation.


	Parameters

	
	adata_map (AnnData) – cell-by-spot AnnData returned by train function.


	adata_sc (AnnData) – cell-by-gene AnnData.


	adata_sp (AnnData) – spatial AnnData data used to save the mapping result.


	annotation (str) – Optional. Cell annotations matrix with shape (number_cells, number_annotations). Default is ‘cell_type’.


	threshold (float) – Optional. Valid for using with adata_map.obs[‘F_out’] from ‘constrained’ mode mapping.
Cell’s probability below this threshold will be dropped. Default is 0.5.






	Returns

	None.
Update spatial AnnData by creating obsm tangram_ct_count field which contains a dataframe that each row is a spot and each column has the cell count for each cell annotation (number_spots, number_annotations).
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tangram.utils.create_segment_cell_df


	
tangram.utils.create_segment_cell_df(adata_sp)

	Produces a Pandas dataframe where each row is a segmentation object, columns reveals its position information.


	Parameters

	adata_sp (AnnData) – spot-by-gene AnnData structure. Must contain obsm.[‘image_features’]



	Returns

	None.
Update spatial AnnData.uns[‘tangram_cell_segmentation’] with a dataframe: each row represents a segmentation object (single cell/nuclei). Columns are ‘spot_idx’ (voxel id), and ‘y’, ‘x’, ‘centroids’ to specify the position of the segmentation object.
Update spatial AnnData.obsm[‘trangram_spot_centroids’] with a sequence
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tangram.utils.cross_val


	
tangram.utils.cross_val(adata_sc, adata_sp, cluster_label=None, mode='clusters', scale=True, lambda_d=0, lambda_g1=1, lambda_g2=0, lambda_r=0, lambda_count=1, lambda_f_reg=1, target_count=None, num_epochs=1000, device='cuda:0', learning_rate=0.1, cv_mode='loo', return_gene_pred=False, density_prior=None, random_state=None, verbose=False)

	Executes cross validation


	Parameters

	
	adata_sc (AnnData) – single cell data


	adata_sp (AnnData) – gene spatial data


	cluster_label (str) – the level that the single cell data will be aggregate at, this is only valid for clusters mode mapping


	mode (str) – Optional. Tangram mapping mode. Currently supported: ‘cell’, ‘clusters’, ‘constrained’. Default is ‘clusters’.


	scale (bool) – Optional. Whether weight input single cell by # of cells in cluster, only valid when cluster_label is not None. Default is True.


	lambda_g1 (float) – Optional. Strength of Tangram loss function. Default is 1.


	lambda_d (float) – Optional. Strength of density regularizer. Default is 0.


	lambda_g2 (float) – Optional. Strength of voxel-gene regularizer. Default is 0.


	lambda_r (float) – Optional. Strength of entropy regularizer. Default is 0.


	lambda_count (float) – Optional. Regularizer for the count term. Default is 1. Only valid when mode == ‘constrained’


	lambda_f_reg (float) – Optional. Regularizer for the filter, which promotes Boolean values (0s and 1s) in the filter. Only valid when mode == ‘constrained’. Default is 1.


	target_count (int) – Optional. The number of cells to be filtered. Default is None.


	num_epochs (int) – Optional. Number of epochs. Default is 1000.


	learning_rate (float) – Optional. Learning rate for the optimizer. Default is 0.1.


	device (str or torch.device) – Optional. Default is ‘cuda:0’.


	cv_mode (str) – Optional. cross validation mode, ‘loo’ (‘leave-one-out’) and ‘10fold’ supported. Default is ‘loo’.


	return_gene_pred (bool) – Optional. if return prediction and true spatial expression data for test gene, only applicable when ‘loo’ mode is on, default is False.


	density_prior (ndarray or str) – Spatial density of spots, when is a string, value can be ‘rna_count_based’ or ‘uniform’, when is a ndarray, shape = (number_spots,). This array should satisfy the constraints sum() == 1. If not provided, the density term is ignored.


	random_state (int) – Optional. pass an int to reproduce training. Default is None.


	verbose (bool) – Optional. If print training details. Default is False.






	Returns

	a dictionary contains information of cross validation (hyperparameters, average test score and train score, etc.)
adata_ge_cv (AnnData): predicted spatial data by LOOCV. Only returns when return_gene_pred is True and in ‘loo’ mode.
test_gene_df (Pandas dataframe): dataframe with columns: ‘score’, ‘is_training’, ‘sparsity_sp’(spatial data sparsity)



	Return type

	cv_dict (dict)
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tangram.utils.cv_data_gen


	
tangram.utils.cv_data_gen(adata_sc, adata_sp, cv_mode='loo')

	Generates pair of training/test gene indexes cross validation datasets


	Parameters

	
	adata_sc (AnnData) – single cell data


	adata_sp (AnnData) – gene spatial data


	mode (str) – Optional. support ‘loo’ and ‘10fold’. Default is ‘loo’.






	Yields

	tuple – list of train_genes, list of test_genes
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tangram.utils.deconvolve_cell_annotations


	
tangram.utils.deconvolve_cell_annotations(adata_sp, filter_cell_annotation=None)

	Assigns cell annotation to each segmented cell. Produces an AnnData structure that saves the assignment in its obs dataframe.


	Parameters

	
	adata_sp (AnnData) – Spatial AnnData structure.


	filter_cell_annotation (sequence) – Optional. Sequence of cell annotation names to be considered for deconvolution. Default is None. When no values passed, all cell annotation names in adata_sp.obsm[“tangram_ct_pred”] will be used.






	Returns

	Saves the cell annotation assignment result in its obs dataframe where each row representing a segmentation object, column ‘x’, ‘y’, ‘centroids’ contain its position and column ‘cluster’ is the assigned cell annotation.



	Return type

	AnnData
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tangram.utils.df_to_cell_types


	
tangram.utils.df_to_cell_types(df, cell_types)

	Utility function that “randomly” assigns cell coordinates in a voxel to known numbers of cell types in that voxel.
Used for deconvolution.


	Parameters

	
	df (DataFrame) – Columns correspond to cell types.  Each row in the DataFrame corresponds to a voxel and
specifies the known number of cells in that voxel for each cell type (int).
The additional column ‘centroids’ specifies the coordinates of the cells in the voxel (sequence of (x,y) pairs).


	cell_types (sequence) – Sequence of cell type names to be considered for deconvolution.
Columns in ‘df’ not included in ‘cell_types’ are ignored for assignment.






	Returns

	A dictionary <cell type name> -> <list of (x,y) coordinates for the cell type>













            

          

      

      

    

  

  
    
    
    tangram.utils.eval_metric
    

    

    

    
 
  

    
      
          
            
  


tangram.utils.eval_metric


	
tangram.utils.eval_metric(df_all_genes, test_genes=None)

	Compute metrics on given test_genes set for evaluation


	Parameters

	
	df_all_genes (Pandas dataframe) – returned by compare_spatial_geneexp(adata_ge, adata_sp);


	test_genes (list) – list of test genes, if not given, test_genes will be set to genes where ‘is_training’ field is False






	Returns

	dict with values of each evaluation metric (“avg_test_score”, “avg_train_score”, “auc_score”),
tuple of auc fitted coordinates and raw coordinates(test_score vs. sparsity_sp coordinates)
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tangram.utils.get_matched_genes


	
tangram.utils.get_matched_genes(prior_genes_names, sn_genes_names, excluded_genes=None)

	Given the list of genes in the spatial data and the list of genes in the single nuclei, identifies the subset of
genes included in both lists and returns the corresponding matching indices.


	Parameters

	
	prior_genes_names (sequence) – List of gene names in the spatial data.


	sn_genes_names (sequence) – List of gene names in the single nuclei data.


	excluded_genes (sequence) – Optional. List of genes to be excluded. These genes are excluded even if present in both datasets.
If None, no genes are excluded. Default is None.






	Returns

	
	mask_prior_indices (list): List of indices for the selected genes in ‘prior_genes_names’.
	mask_sn_indices (list): List of indices for the selected genes in ‘sn_genes_names’.
selected_genes (list): List of names of the selected genes.





For each i, selected_genes[i] = prior_genes_names[mask_prior_indices[i]] = sn_genes_names[mask_sn_indices[i].





	Return type

	A tuple (mask_prior_indices, mask_sn_indices, selected_genes), with
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tangram.utils.one_hot_encoding


	
tangram.utils.one_hot_encoding(l, keep_aggregate=False)

	Given a sequence, returns a DataFrame with a column for each unique value in the sequence and a one-hot-encoding.


	Parameters

	
	l (sequence) – List to be transformed.


	keep_aggregate (bool) – Optional. If True, the output includes an additional column for the original list. Default is False.






	Returns

	
	A DataFrame with a column for each unique value in the sequence and a one-hot-encoding, and an additional
	column with the input list if ‘keep_aggregate’ is True.
The number of rows are equal to len(l).



















            

          

      

      

    

  

  
    
    
    tangram.utils.project_cell_annotations
    

    

    

    
 
  

    
      
          
            
  


tangram.utils.project_cell_annotations


	
tangram.utils.project_cell_annotations(adata_map, adata_sp, annotation='cell_type', threshold=0.5)

	Transfer annotation from single cell data onto space.


	Parameters

	
	adata_map (AnnData) – cell-by-spot AnnData returned by train function.


	adata_sp (AnnData) – spatial data used to save the mapping result.


	annotation (str) – Optional. Cell annotations matrix with shape (number_cells, number_annotations). Default is ‘cell_type’.


	threshold (float) – Optional. Valid for using with adata_map.obs[‘F_out’] from ‘constrained’ mode mapping.
Cell’s probability below this threshold will be dropped. Default is 0.5.






	Returns

	None.
Update spatial Anndata by creating obsm tangram_ct_pred field with a dataframe with spatial prediction for each annotation (number_spots, number_annotations)
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tangram.utils.project_genes


	
tangram.utils.project_genes(adata_map, adata_sc, cluster_label=None, scale=True)

	Transfer gene expression from the single cell onto space.


	Parameters

	
	adata_map (AnnData) – single cell data


	adata_sp (AnnData) – gene spatial data


	cluster_label (AnnData) – Optional. Should be consistent with the ‘cluster_label’ argument passed to map_cells_to_space function.


	scale (bool) – Optional. Should be consistent with the ‘scale’ argument passed to map_cells_to_space function.






	Returns

	spot-by-gene AnnData containing spatial gene expression from the single cell data.



	Return type

	AnnData
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tangram.utils.read_pickle


	
tangram.utils.read_pickle(filename)

	Helper to read pickle file which may be zipped or not.


	Parameters

	filename (str) – A valid string path.



	Returns

	The file object.
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tangram.utils.transfer_annotations_prob


	
tangram.utils.transfer_annotations_prob(mapping_matrix, to_transfer)

	Transfer cell annotations onto space through a mapping matrix.


	Parameters

	
	mapping_matrix (ndarray) – Mapping matrix with shape (number_cells, number_spots).


	to_transfer (ndarray) – Cell annotations matrix with shape (number_cells, number_annotations).






	Returns

	A matrix of annotations onto space, with shape (number_spots, number_annotations)
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tangram.utils.transfer_annotations_prob_filter


	
tangram.utils.transfer_annotations_prob_filter(mapping_matrix, filter, to_transfer)

	Transfer cell annotations onto space through a mapping matrix and a filter.
:param mapping_matrix: Mapping matrix with shape (number_cells, number_spots).
:type mapping_matrix: ndarray
:param filter: Filter with shape (number_cells,).
:type filter: ndarray
:param to_transfer: Cell annotations matrix with shape (number_cells, number_annotations).
:type to_transfer: ndarray


	Returns

	A matrix of annotations onto space, with shape (number_spots, number_annotations).
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Frequently Asked Questions

Do I need a GPU for running Tangram?

A GPU is not required but is recommended. We run most of our mappings on a single P100 which maps ~50k cells in a few minutes.

How do I choose a list of training genes?

A good way to start is to use the top 1k unique marker genes, stratified across cell types, as training genes. Alternatively, you can map using the whole transcriptome. Ideally, training genes should contain high quality signals: if most training genes are rich in dropouts or obtained with bad RNA probes your mapping will not be accurate.

Do I need cell segmentation for mapping on Visium data?

You do not need to segment cells in your histology for mapping on spatial transcriptomics data (including Visium and Slide-seq). You need, however, cell segmentation if you wish to deconvolve the data (_ie_ deterministically assign a single cell profile to each cell within a spatial voxel).

I run out of memory when I map: what should I do?

Reduce your spatial data in various parts and map each single part. If that is not sufficient, you will need to downsample your single cell data as well.





            

          

      

      

    

  

  
    
    
    Tutorials
    

    

    

    
 
  

    
      
          
            
  


Tutorials





  
    [image: thumbnail]
    
      
        
          Tutorial for mapping data with Tangram
        
      
    

  




  
    [image: thumbnail]
    
      
        
          Tutorial for spatial mapping using Tangram
        
      
    

  








            

          

      

      

    

  

  
    
    
    Tutorial for mapping data with Tangram
    

    

    

    
 
  

    
      
          
            
  


Tutorial for mapping data with Tangram

by Tommaso Biancalani biancalt@gene.com and Ziqing Lu luz21@gene.com


	The notebook introduces to mapping single cell data on spatial data using the Tangram method.


	The notebook uses data from mouse brain cortex (different than those adopted in the manuscript).





Last changelog


	June 13th - Tommaso Biancalani biancalt@gene.com









Installation


	Make sure tangram-sc is installed via pip install tangram-sc.


	Otherwise, edit and uncomment the line starting with sys.path specifying the Tangram folder.


	The Python environment needs to install the packages listed in environment.yml.





[1]:






import os, sys
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import scanpy as sc
import torch
#sys.path.append('/home/exx/git/Tangram/')  # uncomment for local import
import tangram as tg

%load_ext autoreload
%autoreload 2
%matplotlib inline

tg.__version__








[1]:







'1.0.0'











Download the data


	If you have wget installed, you can run the following code to automatically download and unzip the data.





[2]:






# Skip this cells if data are already downloaded
!wget https://storage.googleapis.com/tommaso-brain-data/tangram_demo/mop_sn_tutorial.h5ad.gz -O data/mop_sn_tutorial.h5ad.gz
!wget https://storage.googleapis.com/tommaso-brain-data/tangram_demo/slideseq_MOp_1217.h5ad.gz -O data/slideseq_MOp_1217.h5ad.gz
!wget https://storage.googleapis.com/tommaso-brain-data/tangram_demo/MOp_markers.csv -O data/MOp_markers.csv
!gunzip -f data/mop_sn_tutorial.h5ad.gz
!gunzip -f data/slideseq_MOp_1217.h5ad.gz













--2021-08-30 14:22:56--  https://storage.googleapis.com/tommaso-brain-data/tangram_demo/mop_sn_tutorial.h5ad.gz
Resolving storage.googleapis.com (storage.googleapis.com)... 172.217.14.208, 172.217.14.240, 142.250.69.208, ...
Connecting to storage.googleapis.com (storage.googleapis.com)|172.217.14.208|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 474724402 (453M) [application/x-gzip]
Saving to: ‘data/mop_sn_tutorial.h5ad.gz’

data/mop_sn_tutoria 100%[===================>] 452.73M   136MB/s    in 3.3s

2021-08-30 14:22:59 (136 MB/s) - ‘data/mop_sn_tutorial.h5ad.gz’ saved [474724402/474724402]

--2021-08-30 14:23:00--  https://storage.googleapis.com/tommaso-brain-data/tangram_demo/slideseq_MOp_1217.h5ad.gz
Resolving storage.googleapis.com (storage.googleapis.com)... 142.251.33.112, 142.251.33.80, 142.250.217.112, ...
Connecting to storage.googleapis.com (storage.googleapis.com)|142.251.33.112|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 12614106 (12M) [application/x-gzip]
Saving to: ‘data/slideseq_MOp_1217.h5ad.gz’

data/slideseq_MOp_1 100%[===================>]  12.03M  65.4MB/s    in 0.2s

2021-08-30 14:23:01 (65.4 MB/s) - ‘data/slideseq_MOp_1217.h5ad.gz’ saved [12614106/12614106]

--2021-08-30 14:23:01--  https://storage.googleapis.com/tommaso-brain-data/tangram_demo/MOp_markers.csv
Resolving storage.googleapis.com (storage.googleapis.com)... 142.251.33.112, 142.251.33.80, 142.250.217.112, ...
Connecting to storage.googleapis.com (storage.googleapis.com)|142.251.33.112|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 2510 (2.5K) [text/csv]
Saving to: ‘data/MOp_markers.csv’

data/MOp_markers.cs 100%[===================>]   2.45K  --.-KB/s    in 0s

2021-08-30 14:23:02 (27.3 MB/s) - ‘data/MOp_markers.csv’ saved [2510/2510]








	If you do not have wget installed, manually download data from the links below:


	snRNA-seq datasets collected from adult mouse cortex: 10Xv3 MOp [https://storage.googleapis.com/tommaso-brain-data/tangram_demo/mop_sn_tutorial.h5ad.gz].


	For spatial data, we will use one coronal slice of Slide-seq2 data [https://storage.googleapis.com/tommaso-brain-data/tangram_demo/slideseq_MOp_1217.h5ad.gz] (adult mouse brain; MOp area).


	We will map them via a few hundred marker genes [https://storage.googleapis.com/tommaso-brain-data/tangram_demo/MOp_markers.csv], found in literature [https://www.biorxiv.org/content/10.1101/2020.06.04.105700v1].


	All datasets need to be unzipped: resulting h5ad and csv files should be placed in the data folder.













Load spatial data


	Spatial data need to be organized as a voxel-by-gene matrix. Here, Slide-seq data contains 9852 spatial voxels, in each of which there are 24518 genes measured.





[2]:






path = os.path.join('data', 'slideseq_MOp_1217.h5ad')
ad_sp = sc.read_h5ad(path)
ad_sp








[2]:







AnnData object with n_obs × n_vars = 9852 × 24518
    obs: 'orig.ident', 'nCount_RNA', 'nFeature_RNA', 'x', 'y'







	The voxel coordinates are saved in the fields obs.x and obs.y which we can use to visualize the spatial ROI. Each “dot” is the center of a 10um voxel.





[3]:






xs = ad_sp.obs.x.values
ys = ad_sp.obs.y.values
plt.axis('off')
plt.scatter(xs, ys, s=.7);
plt.gca().invert_yaxis()












[image: _images/tutorial_link_10_0.png]









Single cell data


	By single cell data, we generally mean either scRNAseq or snRNAseq.


	We start by mapping the MOp 10Xv3 dataset, which contains single nuclei collected from a posterior region of the primary motor cortex.


	They are approximately 26k profiled cells with 28k genes.





[4]:






path = os.path.join('data','mop_sn_tutorial.h5ad')
ad_sc = sc.read_h5ad(path)
ad_sc








[4]:







AnnData object with n_obs × n_vars = 26431 × 27742
    obs: 'QC', 'batch', 'class_color', 'class_id', 'class_label', 'cluster_color', 'cluster_labels', 'dataset', 'date', 'ident', 'individual', 'nCount_RNA', 'nFeature_RNA', 'nGene', 'nUMI', 'project', 'region', 'species', 'subclass_id', 'subclass_label'
    layers: 'logcounts'







	Usually, we work with data in raw count form, especially if the spatial data are in raw count form as well.


	If the data are in integer format, that probably means they are in raw count.





[5]:






np.unique(ad_sc.X.toarray()[0, :])








[5]:







array([  0.,   1.,   2.,   3.,   4.,   5.,   6.,   7.,   8.,   9.,  10.,
        11.,  12.,  13.,  14.,  15.,  16.,  17.,  18.,  19.,  20.,  21.,
        22.,  23.,  24.,  25.,  26.,  27.,  28.,  29.,  30.,  31.,  33.,
        34.,  36.,  39.,  40.,  43.,  44.,  46.,  47.,  49.,  50.,  53.,
        56.,  57.,  58.,  62.,  68.,  69.,  73.,  77.,  80.,  85.,  86.,
        98., 104., 105., 118., 121., 126., 613.], dtype=float32)







	Here, we only do some light pre-processing as library size correction (in scanpy, via sc.pp.normalize) to normalize the number of count within each cell to a fixed number.


	Sometimes, we apply more sophisticated pre-processing methods, for example for batch correction, although mapping works great with raw data.


	Ideally, the single cell and spatial datasets, should exhibit signals as similar as possible and the pre-processing pipeline should be finalized to harmonize the signals.





[6]:






sc.pp.normalize_total(ad_sc)








	It is a good idea to have annotations in the single cell data, as they will be projected on space after we map.


	In this case, cell types are annotated in the subclass_label field, for which we plot cell counts.


	Note that cell type proportion should be similar in the two datasets: for example, if Meis is a rare cell type in the snRNA-seq then it is expected to be a rare one even in the spatial data as well.





[7]:






ad_sc.obs.subclass_label.value_counts()








[7]:







L5 IT        5623
Oligo        4330
L2/3 IT      3555
L6 CT        3118
Astro        2600
Micro-PVM    1121
Pvalb         972
L6 IT         919
L5 ET         903
L5/6 NP       649
Sst           627
Vip           435
L6b           361
Endo          357
Lamp5         332
VLMC          248
Peri          187
Sncg           94
Name: subclass_label, dtype: int64











Prepare to map


	Tangram learns a spatial alignment of the single cell data so that the gene expression of the aligned single cell data is as similar as possible to that of the spatial data.


	In doing this, Tangram only looks at a subset genes, specified by the user, called the training genes.


	The choice of the training genes is a delicate step for mapping: they need to bear interesting signals and to be measured with high quality.


	Typically, a good start is to choose 100-1000 top marker genes, evenly stratified across cell types. Sometimes, we also use the entire transcriptome, or perform different mappings using different set of training genes to see how much the result change.


	For this case, we choose 253 marker genes of the MOp area which were curated in a different study [https://www.biorxiv.org/content/10.1101/2020.06.04.105700v1].





[8]:






df_genes = pd.read_csv('data/MOp_markers.csv', index_col=0)
markers = np.reshape(df_genes.values, (-1, ))
markers = list(markers)
len(markers)








[8]:







253







	We now need to prepare the datasets for mapping by creating training_genes field in uns dictionary of the two AnnData structures.


	This training_genes field contains genes subset on the list of training genes. This field will be used later inside the mapping function to create training datasets.


	Also, the gene order needs to be the same in the datasets. This is because Tangram maps using only gene expression, so the \(j\)-th column in each matrix must correspond to the same gene.


	And if data entries of a gene are all zero, this gene will be removed


	This task is performed by the helper pp_adatas.





[9]:






tg.pp_adatas(ad_sc, ad_sp, genes=markers)













INFO:root:249 training genes are saved in `uns``training_genes` of both single cell and spatial Anndatas.
INFO:root:18000 overlapped genes are saved in `uns``overlap_genes` of both single cell and spatial Anndatas.
INFO:root:uniform based density prior is calculated and saved in `obs``uniform_density` of the spatial Anndata.
INFO:root:rna count based density prior is calculated and saved in `obs``rna_count_based_density` of the spatial Anndata.







	You’ll now notice that the two datasets now contain 249 genes, but 253 markers were provided.


	This is because the marker genes need to be shared by both dataset. If a gene is missing, pp_adatas will just take it out.


	Finally, the assert line below is a good way to ensure that the genes in the training_genes field in uns are actually ordered in both AnnDatas.





[10]:






ad_sc








[10]:







AnnData object with n_obs × n_vars = 26431 × 26496
    obs: 'QC', 'batch', 'class_color', 'class_id', 'class_label', 'cluster_color', 'cluster_labels', 'dataset', 'date', 'ident', 'individual', 'nCount_RNA', 'nFeature_RNA', 'nGene', 'nUMI', 'project', 'region', 'species', 'subclass_id', 'subclass_label'
    var: 'n_cells'
    uns: 'training_genes', 'overlap_genes'
    layers: 'logcounts'







[11]:






ad_sp








[11]:







AnnData object with n_obs × n_vars = 9852 × 20864
    obs: 'orig.ident', 'nCount_RNA', 'nFeature_RNA', 'x', 'y', 'uniform_density', 'rna_count_based_density'
    var: 'n_cells'
    uns: 'training_genes', 'overlap_genes'







[12]:






assert ad_sc.uns['training_genes'] == ad_sp.uns['training_genes']












Map


	We can now train the model (ie map the single cell data onto space).


	Mapping should be interrupted after the score plateaus,which can be controlled by passing the num_epochs parameter.


	The score measures the similarity between the gene expression of the mapped cells vs spatial data: higher score means better mapping.


	Note that we obtained excellent mapping even if Tangram converges to a low scores (the typical case is when the spatial data are very sparse): we use the score merely to assess convergence.


	If you are running Tangram with a GPU, uncomment device=cuda:0 and comment the line device=cpu. On a MacBook Pro 2018, it takes ~1h to run. On a P100 GPU it should be done in a few minutes.


	For this basic mapping, we do not use regularizers. More sophisticated loss functions can be used using the Tangram library (refer to manuscript or dive into the code). For example, you can pass your density_prior with the hyperparameter lambda_d to regularize the spatial density of cells. Currently uniform, rna_count_based and customized input array are supported for density_prior argument.


	Instead of mapping single cells, we can “average” the cells within a cluster and map the averaged cells instead, which drammatically improves performances. This suggestion was proposed by Sten Linnarsson. To activate this mode, select mode='clusters' and pass the annotation field to cluster_label.





[13]:






ad_map = tg.map_cells_to_space(
    adata_sc=ad_sc,
    adata_sp=ad_sp,
    device='cpu',
    # device='cuda:0',
)













INFO:root:Allocate tensors for mapping.
INFO:root:Begin training with 249 genes and None density_prior in cells mode...
INFO:root:Printing scores every 100 epochs.












Score: 0.103
Score: 0.802
Score: 0.819
Score: 0.822
Score: 0.824
Score: 0.825
Score: 0.826
Score: 0.826
Score: 0.827
Score: 0.827












INFO:root:Saving results..







	The mapping results are stored in the returned AnnData structure, saved as ad_map, structured as following:


	The cell-by-spot matrix X contains the probability of cell \(i\) to be in spot \(j\).


	The obs dataframe contains the metadata of the single cells.


	The var dataframe contains the metadata of the spatial data.


	The uns dictionary contains a dataframe with various information about the training genes (saved ad train_genes_df).






	We can now save the mapping results for post-analysis.









Analysis


	The most common application for mapping single cell data onto space is to transfer the cell type annotations onto space.


	This is dona via plot_cell_annotation, which visualizes spatial probability maps of the annotation in the obs dataframe (here, the subclass_label field). You can set robust argument to True and at the same time set the perc argument to set the range to the colormap, which would help remove outliers.


	The following plots recover cortical layers of excitatory neurons and sparse patterns of glia cells. The boundaries of the cortex are defined by layer 6b (cell type L6b) and oligodendrocytes are found concentrated into sub-cortical region, as expected.


	Yet, the VLMC cell type patterns does not seem correct: VLMC cells are clustered in the first cortical layer, whereas here are sparse in the ROI. This usually means that either (1) we have not used good marker genes for VLMC cells in our training genes (2) the present marker genes are very sparse in the spatial data, therefore they don’t contain good mapping signal.





[15]:






tg.plot_cell_annotation(ad_map, ad_sp, annotation='subclass_label', nrows=5, ncols=4, robust=True, perc=0.05)













INFO:root:spatial prediction dataframe is saved in `obsm` `tangram_ct_pred` of the spatial AnnData.











[image: _images/tutorial_link_34_1.png]
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	Let’s try to get a deeper sense of how good this mapping is. A good helper is plot_training_scores which gives us four panels:


	The first panels is a histogram of the simlarity score for each training gene. Most genes are mapped with very high similarity (> .9) although few of them have score ~.5. We would like to understand why for these genes the score is lower.


	The second panel shows that there is a neat correlation between the training score of a gene (y-axis) and the sparsity of that gene in the snRNA-seq data (x-axis). Each dot is a training gene. The trend is that the sparser the gene the higher the score: this usually happens because very sparse gene are easier to map, as their pattern is matched by placing a few “jackpot cells” in the right spots.


	The third panel is similar to the second one, but contains the gene sparsity of the spatial data. Spatial data are usually more sparse than single cell data, a discrepancy which is often responsible for low quality mapping.


	In the last panel, we show the training scores as a function of the difference in sparsity between the dataset. For genes with comparable sparsity, the mapped gene expression is very similar to that in the spatial data. However, if a gene is quite sparse in one dataset (typically, the spatial data) but not in other, the mapping score is lower. This occurs as Tangram cannot properly matched the gene pattern because of inconsistent amount of dropouts between the datasets.









[16]:






tg.plot_training_scores(ad_map, bins=10, alpha=.5)












[image: _images/tutorial_link_36_0.png]





	Although the above plots give us a summary of scores at single-gene level, we would need to know which are the genes are mapped with low scores.


	These information can be access from the dataframe .uns['train_genes_df'] from the mapping results; this is the dataframe used to build the four plots above.





[17]:






ad_map.uns['train_genes_df']








[17]:
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Tutorial for spatial mapping using Tangram


	by Ziqing Lu luz21@gene.com and Tommaso Biancalani biancalt@gene.com.


	Last update: August 16th 2021





What is Tangram?

Tangram is a method for mapping single-cell (or single-nucleus) gene expression data onto spatial gene expression data. Tangram takes as input a single-cell dataset and a spatial dataset, collected from the same anatomical region/tissue type. Via integration, Tangram creates new spatial data by aligning the scRNAseq profiles in space. This allows to project every annotation in the scRNAseq (e.g. cell types, program usage) on space.




What do I use Tangram for?

The most common application of Tangram is to resolve cell types in space. Another usage is to correct gene expression from spatial data: as scRNA-seq data are less prone to dropout than (e.g.) Visium or Slide-seq, the “new” spatial data generated by Tangram resolve many more genes. As a result, we can visualize program usage in space, which can be used for ligand-receptor pair discovery or, more generally, cell-cell communication mechanisms. If cell segmentation is available, Tangram can
be also used for deconvolution of spatial data. If your single cell are multimodal, Tangram can be used to spatially resolve other modalities, such as chromatin accessibility.






Frequently Asked Questions about Tangram


How is Tangram different, than all the other deconvolution/mapping method?


	Validation. Most methods “validate” mappings by looking at known patterns or proportion of cell types. These are good sanity checks, but are hardly useful when mapping is used for discovery. In Tangram, mappings are validated by inspective the predictions of holdout genes (test transcriptome).







My scRNAseq/spatial data come from different samples. Can I still use Tangram?


	Yes. There is a clever variation invented by Sten Linnarsson [http://linnarssonlab.org/], which consists of mapping average cells of a certain cell type, rather than single cells. This method is much faster, and smooths out variation in biological signal from different samples via averaging. However, it requires annotated scRNA-seq, sacrifices resolving biological variability at single-cell level. To map this way, pass mode=cluster.







Does Tangram only work on mouse brain data?


	No. The original manuscript focused on mouse brain data b/c was funded by BICCN. We subsequently used Tangram for mapping lung, kidney and cancer tissue. If mapping doesn’t work for your case, that is hardly due to the complexity of the tissue.







Why doesn’t Tangram have hypotheses on the underlying model?


	Most models used in biology are probabilistic: they assume that data are generated according to a certain probability distribution, hence the hypothesis. But Tangram doesn’t work that way: the hypothesis is that scRNA-seq and spatial data are generated with the same process (i.e. same biology) regardless of the process.







Where do I learn more about Tangram?


	Check out our documentation [https://tangram-sc.readthedocs.io/] for learning more about the method, or our GitHub repo [https://github.com/broadinstitute/Tangram] for the latest version of the code. Tangram has been released in :cite:`tangram`.







Setting up

Tangram is based on pytorch, scanpy and (optionally but highly-recommended) squidpy - this tutorial is designed to work with squidy. You can also check this tutorial [https://github.com/broadinstitute/Tangram/blob/master/tangram_tutorial.ipynb], prior to integration with squidpy.


	To run the notebook locally, create a conda environment as conda env create -f tangram_environment.yml using our YAML file [https://github.com/theislab/squidpy_notebooks/blob/master/envs/tangram_environment.yml].


	This notebook is based on squidpy v1.1.0.





[2]:






import scanpy as sc
import squidpy as sq
import numpy as np
import pandas as pd
from anndata import AnnData
import pathlib
import matplotlib.pyplot as plt
import matplotlib as mpl
import skimage
import seaborn as sns
import tangram as tg

sc.logging.print_header()
print(f"squidpy=={sq.__version__}")

%load_ext autoreload
%autoreload 2
%matplotlib inline













scanpy==1.8.1 anndata==0.7.6 umap==0.5.1 numpy==1.20.0 scipy==1.5.2 pandas==1.2.0 scikit-learn==0.24.2 statsmodels==0.12.2 python-igraph==0.9.6 pynndescent==0.5.4
squidpy==1.1.0













Loading datasets

Load public data available in Squidpy, from mouse brain cortex. Single cell data are stored in adata_sc. Spatial data, in adata_st.


[3]:






adata_st = sq.datasets.visium_fluo_adata_crop()
adata_st = adata_st[
    adata_st.obs.cluster.isin([f"Cortex_{i}" for i in np.arange(1, 5)])
].copy()
img = sq.datasets.visium_fluo_image_crop()

adata_sc = sq.datasets.sc_mouse_cortex()





































We subset the crop of the mouse brain to only contain clusters of the brain cortex. The pre-processed single cell dataset was taken from :cite:`tasic2018shared` and pre-processed with standard scanpy functions.

Let’s visualize both spatial and single-cell datasets.


[5]:






fig, axs = plt.subplots(1, 2, figsize=(20, 5))
sc.pl.spatial(
    adata_st, color="cluster", alpha=0.7, frameon=False, show=False, ax=axs[0]
)
sc.pl.umap(
    adata_sc, color="cell_subclass", size=10, frameon=False, show=False, ax=axs[1]
)
plt.tight_layout()












[image: _images/tutorial_sq_link_7_0.png]






Tangram learns a spatial alignment of the single cell data by looking at a subset of genes, specified by the user, called the training genes. Training genes need to bear interesting signal and to be measured with high quality. Typically, we choose the training genes are 100-1000 differentially expressedx genes, stratified across cell types. Sometimes, we also use the entire transcriptome, or perform different mappings using different set of training genes to see how much the result change.

Tangram fits the scRNA-seq profiles on space using a custom loss function based on cosine similarity. The method is summarized in the sketch below:

[image: title]




Pre-processing

For this case, we use 1401 marker genes as training genes.


[6]:






sc.tl.rank_genes_groups(adata_sc, groupby="cell_subclass", use_raw=False)
markers_df = pd.DataFrame(adata_sc.uns["rank_genes_groups"]["names"]).iloc[0:100, :]
markers = list(np.unique(markers_df.melt().value.values))
len(markers)













WARNING: Default of the method has been changed to 't-test' from 't-test_overestim_var'







[6]:







1401






We prepares the data using pp_adatas, which does the following: - Takes a list of genes from user via the genes argument. These genes are used as training genes. - Annotates training genes under the training_genes field, in uns dictionary, of each AnnData. - Ensure consistent gene order in the datasets (Tangram requires that the the \(j\)-th column in each matrix correspond to the same gene). - If the counts for a gene are all zeros in one of the datasets, the gene is
removed from the training genes. - If a gene is not present in both datasets, the gene is removed from the training genes.


[7]:






tg.pp_adatas(adata_sc, adata_st, genes=markers)













INFO:root:1280 training genes are saved in `uns``training_genes` of both single cell and spatial Anndatas.
INFO:root:14785 overlapped genes are saved in `uns``overlap_genes` of both single cell and spatial Anndatas.
INFO:root:uniform based density prior is calculated and saved in `obs``uniform_density` of the spatial Anndata.
INFO:root:rna count based density prior is calculated and saved in `obs``rna_count_based_density` of the spatial Anndata.






Two datasets contain 1280 training genes of the 1401 originally provided, as some training genes have been removed.




Find alignment

To find the optimal spatial alignment for scRNA-seq profiles, we use the map_cells_to_space function: - The function maps iteratively as specified by num_epochs. We typically interrupt mapping after the score plateaus. - The score measures the similarity between the gene expression of the mapped cells vs spatial data on the training genes. - The default mapping mode is mode='cells', which is recommended to run on a GPU. - Alternatively, one can specify mode='clusters' which
averages the single cells beloning to the same cluster (pass annotations via cluster_label). This is faster, and is our chioce when scRNAseq and spatial data come from different specimens. - If you wish to run Tangram with a GPU, set device=cuda:0 otherwise use the set device=cpu. - density_prior specifies the cell density within each spatial voxel. Use uniform if the spatial voxels are at single cell resolution (ie MERFISH). The default value, rna_count_based, assumes
that cell density is proportional to the number of RNA molecules.


[8]:






ad_map = tg.map_cells_to_space(adata_sc, adata_st,
    mode="cells",
#     mode="clusters",
#     cluster_label='cell_subclass',  # .obs field w cell types
    density_prior='rna_count_based',
    num_epochs=500,
    # device="cuda:0",
    device='cpu',
)













INFO:root:Allocate tensors for mapping.
INFO:root:Begin training with 1280 genes and rna_count_based density_prior in cells mode...
INFO:root:Printing scores every 100 epochs.












Score: 0.613, KL reg: 0.001
Score: 0.733, KL reg: 0.000
Score: 0.736, KL reg: 0.000
Score: 0.737, KL reg: 0.000
Score: 0.737, KL reg: 0.000












INFO:root:Saving results..






The mapping results are stored in the returned AnnData structure, saved as ad_map, structured as following: - The cell-by-spot matrix X contains the probability of cell i to be in spot j. - The obs dataframe contains the metadata of the single cells. - The var dataframe contains the metadata of the spatial data. - The uns dictionary contains a dataframe with various information about the training genes (saved as train_genes_df).




Cell type maps

To visualize cell types in space, we invoke project_cell_annotation to transfer the annotation from the mapping to space. We can then call plot_cell_annotation to visualize it. You can set the perc argument to set the range to the colormap, which would help remove outliers.


[10]:






tg.project_cell_annotations(ad_map, adata_st, annotation="cell_subclass")
annotation_list = list(pd.unique(adata_sc.obs['cell_subclass']))
tg.plot_cell_annotation_sc(adata_st, annotation_list, perc=0.02)













INFO:root:spatial prediction dataframe is saved in `obsm` `tangram_ct_pred` of the spatial AnnData.











[image: _images/tutorial_sq_link_21_1.png]




The first way to get a sense if mapping was successful is to look for known cell type patterns. To get a deeper sense, we can use the helper plot_training_scores which gives us four panels:


[11]:






tg.plot_training_scores(ad_map, bins=20, alpha=.5)












[image: _images/tutorial_sq_link_23_0.png]





	The first panel is a histogram of the simlarity scores for each training gene.


	In the second panel, each dot is a training gene and we can observe the training score (y-axis) and the sparsity in the scRNA-seq data (x-axis) of each gene.


	The third panel is similar to the second one, but contains the gene sparsity of the spatial data. Spatial data are usually more sparse than single cell data, a discrepancy which is often responsible for low quality mapping.


	In the last panel, we show the training scores as a function of the difference in sparsity between the dataset. For genes with comparable sparsity, the mapped gene expression is very similar to that in the spatial data. However, if a gene is quite sparse in one dataset (typically, the spatial data) but not in other, the mapping score is lower. This occurs as Tangram cannot properly matched the gene pattern because of inconsistent amount of dropouts between the datasets.




Although the above plots give us a summary of scores at single-gene level, we would need to know which are the genes are mapped with low scores. These information are stored in the dataframe .uns['train_genes_df']; this is the dataframe used to build the four plots above.


[12]:






ad_map.uns['train_genes_df']
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Citing Tangram

Tangram has been released in the following publication

Biancalani* T., Scalia* G. et al. - _Deep learning and alignment of spatially-resolved whole transcriptomes of single cells in the mouse brain with Tangram biorXiv 10.1101/2020.08.29.272831 [https://www.biorxiv.org/content/10.1101/2020.08.29.272831v3] (2020)
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Tangram News


	On Jan 28th 2021, Sten Linnarsson gave a talk [https://www.youtube.com/watch?v=0mxIe2AsSKs] at the WWNDev Forum and demostrated their mappings of the developmental mouse brain using Tangram.


	On Mar 9th 2021, Nicholas Eagles wrote a blog post [http://research.libd.org/rstatsclub/2021/03/09/lessons-learned-applying-tangram-on-visium-data/#.YPsZphNKhb-] about applying Tangram on Visium data.
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